Search results

1 – 10 of over 1000
Article
Publication date: 16 August 2013

Carlos L. Moreno and Ana M. Sarmento

The paper aims to present an experimental testing program regarding reinforced concrete slabs, with and without shear reinforcement, submitted to punching under both symmetric and…

Abstract

Purpose

The paper aims to present an experimental testing program regarding reinforced concrete slabs, with and without shear reinforcement, submitted to punching under both symmetric and eccentric loading. Comparisons between numerical simulations and experimental behaviour results are carried on. The capabilities and limitations of the numerical model to reproduce the brittle punching‐shear failure are discussed.

Design/methodology/approach

The paper opted for a performance assessment of a numerical model, comparing FEM results with known experimental tests properly instrumented. Capability of DIANA software to simulate the punching behaviour of slabs is discussed.

Findings

The paper demonstrates that the mechanical properties assigned to the element layer containing the bending reinforcement impose the load deflection stiffness behaviour. Good agreement was found between the predicted and the observed deformation behaviour. Nevertheless, the reproduction of the punching ultimate capacity is strongly dependent on the adopted value for the shear retention factor, which appears to be the major decisive parameter.

Originality/value

This paper demonstrates that the smeared crack model based on both the concept of strain decomposition (SD) and total strain with fixed orthogonal cracks approach (TSF) can correctly be used for the analysis of the behaviour of slabs submitted to punching shear.

Details

Engineering Computations, vol. 30 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 December 2013

Mehrafarid Ghoreishi, Ashutosh Bagchi and Mohamed Sultan

There are a number of benefits associated with two-way concrete flat slab construction for office buildings, parking garages and apartments - for example, reduced formwork, prompt…

229

Abstract

There are a number of benefits associated with two-way concrete flat slab construction for office buildings, parking garages and apartments - for example, reduced formwork, prompt erection, flexibility of partitions, and minimal increase in story heights. However, concrete flat slabs could be quite vulnerable to punching shear failure in the event of a fire. The objective of the present article is to provide a state of the art review of the existing research and the issues associated with concrete flat slabs in fire and elevated temperature. There are a number of experimental and analytical studies on the punching shear behavior of concrete flat slabs in ambient conditions, available in the literature. Based on these studies, it is found that punching shear capacity in ambient condition is affected by many factors, which may not remain constant during a fire exposure. Only a limited number of studies on concrete flat slabs for punching shear failure in fire are available. This paper reviews the available experimental and analytical studies, standards and codes to address the research gap in estimating of punching shear strength of concrete flat slab-column connections without shear reinforcement.

Details

Journal of Structural Fire Engineering, vol. 4 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 August 2019

Valdemir Colares Pinto, Vitor Branco and Denio Ramam Oliveira

This study aims to contribute to a better understanding of the influence of the position of openings around L cross-section columns in reinforced concrete flat slabs through a…

140

Abstract

Purpose

This study aims to contribute to a better understanding of the influence of the position of openings around L cross-section columns in reinforced concrete flat slabs through a nonlinear computational analysis compared to experimental results.

Design/methodology/approach

Tests on four reinforced concrete flat slabs of 1800 x 1800 x 120 mm3 were carried out under symmetrical punching; one slab was referenced (without hole) and three had square holes of 100 x 100 mm2 close to columns and with centroid on the critical perimeter at 0.5 d and 2.0 d of the loaded area. A nonlinear analysis of the slabs was performed to aid the interpretation and preview of the experimental results, and to estimate the ultimate loads and failure modes. These estimates followed recommendations of ACI 318, Eurocode 2, NBR 6118, MC 2010 and critical shear crack theory.

Findings

The results showed that the presence of holes in the analyzed regions does not influence significantly the behavior of the slabs, leading to conservative structural design once the ultimate load estimates are low, while the computational results adequately estimated the slabs’ behavior.

Research limitations/implications

A few limitations were observed on how to implement the correct modeling system for computational nonlinear simulation.

Practical implications

All design codes underestimated failure loads and the theoretical method was not much better. The nonlinear computational simulations were satisfactory, presenting results close to experimental ones (97 per cent accuracy). Computational simulation also showed that the presence of holes does not significantly influence the load-vertical displacement behavior or failure loads.

Social implications

Structural and civil engineers and designers can observe with better details the punching phenomenon and make take secure decisions to building projects. They can preview accurate cases that are not cited in design codes and literature.

Originality/value

This is a very rare subject in literature that interests the entire scientific community and especially reinforced concrete designers. Presenting a new methodology to nonlinear flat slab with openings modeling to punching shear provoked by L cross section columns, case that is not cited in literature and design codes.

Details

Engineering Computations, vol. 36 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 April 2021

Donia Salman, Rabab Allouzi and Nasim Shatarat

The main goal is to investigate the effect of size and location of opening and column size on the punching shear strength. Openings are often needed in order to install mechanical…

Abstract

Purpose

The main goal is to investigate the effect of size and location of opening and column size on the punching shear strength. Openings are often needed in order to install mechanical and electrical services. This process takes away part of the concrete volume which is responsible for resisting the shear forces and any unbalanced moment. Furthermore, the application of rectangular columns in flat slabs is commonly used in practice as they provide lateral stiffness to the building. They are also utilised in garages and multi-storey buildings where these elongated cross-sectional columns reduce the effective span length between adjacent columns.

Design/methodology/approach

This research is a numerical-based investigation that is calibrated based on a thirteen previously tested and numerically calibrated slab specimens with no openings. A parametric study is conducted in this study to consider the effect of other parameters, which are the size and location of opening and the rectangularity ratio of column in order to evaluate their effect on the punching shear capacity. A total of 156 models are developed to study these factors. Additionally, the predicted shear carrying capacity of the simulated slabs is calculated using the ACI318–19 and Eurocode (EC2-04) equation.

Findings

The presence of openings reduced the punching shear capacity. The small opening's location and orientation have almost no effect except for one slab. For slabs of large openings, the presence of openings reduced the punching capacity. The punching capacity is higher when the openings are farther from the column. The numerically obtained results of slabs with rectangular columns show lower punching capacity compared to slabs of squared columns with the same length of the punching shear control perimeter. The punching capacity for all slabs is predicted by ACI318–19 and Eurocode (EC2-04) and it is found that Eurocode (EC2-04) provided a closer estimation.

Originality/value

The slabs considered for calibration were reinforced with four different punching shear reinforcement configurations, namely; ordinary closed rectangular stirrups, rectangular spiral stirrups, advanced rectangular spiral stirrups and circular spiral. Generally, there has been limited research on concrete flat slabs with openings in comparison with other subjects related to structural engineering (Guan, 2009) and no research on punching shear with openings of slabs reinforced with these reinforcement schemes. The available research focussed on the effects of openings on the flexural behaviour of reinforced concrete slabs includes Casadei et al. (2003), Banu et al. (2012) and Elsayed et al. (2009). In addition, experimental tests that examined slabs supported on rectangular columns are very limited.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 October 2021

Bouamra Youcef, Fatma Taouche-Kheloui and Kamal Ait Tahar

The purpose of this study is experimental research of the mechanical behavior of slab reinforced by cork composite patch submitted to an eccentric progressive compressive load…

Abstract

Purpose

The purpose of this study is experimental research of the mechanical behavior of slab reinforced by cork composite patch submitted to an eccentric progressive compressive load applied to on impact rectangle of dimensions 28 × 23 cm2. An analytical model and numerical modeling by finite elements are performed. This study is motivated by the evaluation of the effectiveness of this type of partial reinforcement to improve strength and ductility. The results are given by load-displacement curves, tensile damages cartography and ultimate strength histogram.

Design/methodology/approach

In experimental protocol, the following two parameters have been considered: the dimensions of the patch and the eccentricity of the load. The sections of the patches are calculated so that the ratio (XP/YP) patch is proportional to the ratio (LD/lD), with a step of 6 cm longitudinally and 4 cm transversely. Several dimensions patches are considered: (6 × 4) cm2, (12 × 8) cm2 and (18 × 12) cm2. The eccentric punching loading test was performed with an eccentricity of the load (1/3) L’ and (2/3) L’ compared to the center of gravity of the slab. Taking into account the eccentricity of the load in estimating the rupture strength, the equations are developed. Thus, numerical simulations are carried, to extract tensile damages cartography.

Findings

The results show that the rupture begins with the appearance of cracks in the unreinforced area. For an eccentricity of 1/3L’, the best strength/section ratio is obtained for patch (12 × 8) cm2, whereas for an eccentricity de 2/3L’, the patch (6 × 4) cm2 gives a better resistance. The results highlight the influence of the composite on the ultimate load. The force-displacement relations are little modified in the elastic phase. The experimental results have been compared with the theoretical models showing a good correlation.

Originality/value

The strength and ductility are depended on the dimensions of the patch and the eccentricity of the load. The use of a patch to cover the most stressed area, in the event of an eccentric axial load is a very economical solution compared to the total reinforcement. The damage field shows that the evolution of cracks depends on dimensions and the position of the patch. Indeed, the eccentricity of the vertical load induces an additional bending moment that will influence the fracture surface. The rupture load and ultimate displacement increase with the surface of the patch.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2005

Maria Anna Polak

The paper aims to present a method of implementing layered shell finite elements for punching shear analysis of reinforced concrete slabs. The emphasis is on the influence of…

1577

Abstract

Purpose

The paper aims to present a method of implementing layered shell finite elements for punching shear analysis of reinforced concrete slabs. The emphasis is on the influence of different material modelling parameters on the calculated results.

Design/methodology/approach

The finite element approach utilizes quadratic isoparametric C0 shell elements. The elements take into account an out‐of‐plane shear response and allow implementation of three‐dimensional constitutive models and out‐of‐plane reinforcement. Through the consideration of 3D states of strain and stress, the formulation can predict structural failures caused by either flexure or punching shear.

Findings

Comparisons are shown between analytical solutions and several test results, which show that the presented non‐linear finite element formulation works well for modelling slab behaviour.

Originality/value

The most important contribution of this work is the use of shell elements for punching and flexure analysis of reinforced concrete slabs and the discussion on the influence of material modelling on the calculated results. Shell finite elements have been extensively used in the analysis of slabs for flexure. However, the critical issue in the design of these slabs is a 3D shear effect around the column area called punching shear. 3D elements can be used for punching shear analysis of reinforced concrete slabs, but the cost of using these elements and the computational effort make them impractical for real design situations. Therefore, shell finite elements, with appropriate element and material modelling formulations that make them applicable for punching shear analysis, are employed in the presented work.

Details

Engineering Computations, vol. 22 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 1943

William Schroeder and Thomas H. Hazlett

THE modern aeroplane is constructed largely from sheet metal. As such, the most important production problems are those of sheet metal forming, and assembling. Production is here…

Abstract

THE modern aeroplane is constructed largely from sheet metal. As such, the most important production problems are those of sheet metal forming, and assembling. Production is here considered as not only the act of forming and assembling the required number of parts, but also the making of forming tools, and all processing of parts such as heat‐treating. Only that phase of the above concept of production which deals with the tooling for production and the forming and heat‐treating will be considered here. The design of the aircraft parts will also be discussed somewhat, for it is obvious that the design of the part (designed shape and materials used) frequently determines whether the part can or cannot be readily made.

Details

Aircraft Engineering and Aerospace Technology, vol. 15 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 February 1972

R.H. Searle and L. Corbett

An IBM 029 card punch is used daily to prepare transaction cards, based on master cards for books and borrowers, which form the computer input to update and process the library…

Abstract

An IBM 029 card punch is used daily to prepare transaction cards, based on master cards for books and borrowers, which form the computer input to update and process the library loans files on disk once each fortnight. The system handles over 100 new loans and renewals each day, giving an annual total of some 25,000 transactions. Output from the computer includes addressed overdue book reminders and various lists. Overall running costs average £120 per month with the cost of a single loan transaction 6p. The same system also controls reports loans. A computer‐based loans control system has been operating at Aldermaston since 1965 when a punched card system, designed for use with an IBM 1460 computer was introduced to replace a four‐part continuous stationary system which had become ineffective through overloading and staff shortage. This, the first computer‐based loans control system to become operational in the United Kingdom, was adapted from one used at the General Electric Company's nuclear establishment at Hanford. The system continued to operate on our next computer, an IBM 360/40 using the ‘1460 emulation mode’, but with the loss of this feature in 1969 when an IBM 360/50 computer was installed it was necessary to reprogram. The time available in which to reprogram was limited by the computer changeover date to only a few weeks. In view of this, and our ultimate aim of fully integrated loans and catalogue records with on‐line access which will require a completely new system, it was decided to make only essential changes and modifications to the existing system. The resulting system (Fig. 1) while basically similar to its predecessor in outline is more sophisticated in detail. The library serves a potential 2,000 customers and has two distinct and separate service points: the Reading Room with a collection of over 26,000 books and pamphlets, of which approximately 7,000 are on loan at any one time, and the Reports Library which has over 230,000 microfiches and microcards and a further 46,000 paper copy reports. The loans control requirements for both departments are similar but not identical. Reports are on closed access, are less used individually than books, have complex serial number references and some are security classified with inherent receipting requirements. One set of program routines processes the loans records of both sections,but on alternate weeks, giving a fortnightly update to each department. A brief tabular outline of the system has already been published in Program. In this paper the description concentrates on the book loans procedures with only a summary of the reports procedures where the differences are substantial.

Details

Program, vol. 6 no. 2
Type: Research Article
ISSN: 0033-0337

Article
Publication date: 1 January 1954

EUGENE GARFIELD

The uses of punched‐cards in documentation are already so varied as to confuse the potential user. Consequently, many organizations and individuals who could efficiently employ…

Abstract

The uses of punched‐cards in documentation are already so varied as to confuse the potential user. Consequently, many organizations and individuals who could efficiently employ existing techniques are not aware of these possibilities. Even in the specialized problem of preparing subject‐heading lists various approaches are in use. The purpose of this paper is to outline the uses of punched‐cards in this special area.

Details

Journal of Documentation, vol. 10 no. 1
Type: Research Article
ISSN: 0022-0418

Article
Publication date: 20 December 2023

Fadwa M. Al Chamaa, Ahmad El Ghor and Elie Hantouche

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Abstract

Purpose

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Design/methodology/approach

A total of nine steel plates with a single bolt hole are tested. The single bolt holes are fabricated using three different hole-making processes: drilling, waterjet and plasma. Among the nine steel plates, three fabricated specimens are control specimens and are tested at ambient temperature. The six remaining steel plates with a single bolt hole are subjected to a complete heating-cooling cycle and then monotonically loaded until failure. The six fabricated specimens are first heated up to two different temperatures 800 and 925 °C, and then cooled back to the ambient prior to loading.

Findings

The results show that after being exposed to post-fire temperatures (800 and 925 °C), the maximum decrease in strength of the S235 steel plate was 6% (at 925 °C), 14% (at 925 °C) and 22% (at 800 °C) when compared to the results of ambient specimens for waterjet, drilled and plasma bolt holes, respectively. For post-fire temperature tests, drilled and waterjet bolt hole-making processes result in having approximately the same load-displacement response, and both have larger strength and ductility than those obtained using plasma cutting.

Originality/value

This study provides preliminary data to guide the steel designers and fabricators in choosing the most suitable hole-making process for fire applications and to quantify the post-fire reduction in capacity of S235 plates.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 1000