Search results

1 – 10 of over 42000
Book part
Publication date: 5 May 2017

Bartosz Sawik, Javier Faulin and Elena Pérez-Bernabeu

The purpose of this chapter is to solve multi-objective formulation for traveling salesman and transportation problems. Computations are based on real data for the road freight…

Abstract

The purpose of this chapter is to solve multi-objective formulation for traveling salesman and transportation problems. Computations are based on real data for the road freight transportation of a Spanish company. The company was selected because of its importance in Spanish economy and market. This company is important in the whole country; however, it has its higher importance in the northern part of Spain. The requirements for these models are the minimization of total distance and the CO2 emissions. To achieve this, it is required to know and carry out the minimization of the total distance traveled by the trucks during the deliveries. The deliveries are going to be executed between the different locations, nodes, in the region, and Elorrio, where the depot is situated. The data have been used to decide the best route in order to obtain a minimization of cost for the company. As it was mentioned earlier, the problems are focused on the reduction of the amount of CO2 emissions and minimization of total distance; by studying different parameters, the best solutions of route transportation have been obtained. The software used to solve these models is CPLEX solver with AMPL programming language.

Article
Publication date: 1 February 2000

Huu‐Phuong Ta, Hwee‐Ling Choo and Chee‐Chuong Sum

In recent years, many foreign firms have flocked to China (People’s Republic of China) to take advantage of the opportunities in the large market. However, some of these firms…

7990

Abstract

In recent years, many foreign firms have flocked to China (People’s Republic of China) to take advantage of the opportunities in the large market. However, some of these firms have faced logistical problems in transporting and distributing their goods in China. Identifies the transportation problems faced by foreign firms operating in China and examines the possible actions and factors for minimizing such problems. The objectives of this study are achieved through a survey of Singapore‐based manufacturing firms that have operations in China. The survey results show that some transportation problems were more serious than others. The type of transport mode and ownership of the transport services used can affect the degree of satisfaction for the transportation of goods in China. Also identifies the actions taken by the firms that were most effective in alleviating the transportation problems. The government can play an important role in improving the logistical environment.

Details

International Journal of Physical Distribution & Logistics Management, vol. 30 no. 1
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 1 June 2021

Srikant Gupta, Sachin Chaudhary, Prasenjit Chatterjee and Morteza Yazdani

Logistics is the part of the supply chain (SC) that plans, executes and handles forward and reverse movement and storage of products, services and related information, in order to…

Abstract

Purpose

Logistics is the part of the supply chain (SC) that plans, executes and handles forward and reverse movement and storage of products, services and related information, in order to respond to customers' needs effectively and efficiently. The main concern for logistics is to ensure that the correct product is placed at the right time. This paper introduces a linear model of shipping focused on decision-making, which includes configuration of shipping network, choosing of transport means and transfer of individual customer shipments through a particular transport system.

Design/methodology/approach

In this study, authors try to address the problem of supply chain network (SCN) where the primary goal is to determine the appropriate order allocation of products from different sources to different destinations. They also seek to minimize total transportation cost and inventory cost by simultaneously determining optimal locations, flows and shipment composition. The formulated problem of getting optimal allocation turns out to be a problem of multi-objective programming, and it is solved by using the max-addition fuzzy goal programming approach, for obtaining optimal order allocation of products. Furthermore, the problem demand and supply parameters have been considered random in nature, and the maximum likelihood estimation approach has been used to assess the unknown probabilistic distribution parameters with a specified probability level (SPL).

Findings

A case study has also been applied for examining the effectiveness and applicability of the developed multi-objective model and the proposed solution methods. Results of this study are very relevant for the manufacturing sector in particular, for those facing logistics issues in SCN. It enables researchers and managers to cope with various types of uncertainty and logistics risks associated with SCN.

Research limitations/implications

The principal contribution of the proposed model is the improved modelling of transportation and inventory, which are affected by different characteristics of SCN. To demonstrate computational information of the suggested methods and proposed model, a case illustration of SCN is provided. Also, environmentalism is increasingly becoming a significant global concern. Hence, the concept proposed could be extended to include environmental aspects as an objective function or constraint.

Originality/value

Efficient integration of logistical cost components, such as transportation costs, inventory costs, with mathematical programming models is an important open issue in logistics optimization. This study expands conventional facility location models to incorporate a range of logistic system elements such as transportation cost and different types of inventory cost, in a multi-product, multi-site network. The research is original and is focused on case studies of real life.

Article
Publication date: 28 April 2020

Hong Zhang and Lu Yu

Prefabricated construction concerns off-site production, multi-mode transportation and on-site installation of the prefabricated components, which are interdependent and…

1078

Abstract

Purpose

Prefabricated construction concerns off-site production, multi-mode transportation and on-site installation of the prefabricated components, which are interdependent and dynamically interactive, so coordination among the multiple stages along the prefabricated component supply chain (PCSC) is indispensable. This study aims to solve the dynamic transportation planning problem for the PCSC by addressing the interdependency, dynamic interaction and coordination among the multiple stages and different objectives of the stakeholders.

Design/methodology/approach

The PCSC is analyzed and then the formulation for the dynamic transportation planning problem is developed based on the just-in-time (JIT) strategy. The particle swarm optimization (PSO) algorithm is applied to solve the dynamic optimization problem.

Findings

The proposed dynamic transportation planning method for the PCSC regarding component supplier selection, transportation planning for means, routes and schedule, site layout planning and transportation plan adjustment is able to facilitate coordination among the multiple stages by addressing their interdependencies and dynamic interactions, as well as different economic objectives of the stakeholders such as suppliers or the contractor.

Originality/value

The study helps to achieve the advantages of prefabricated construction by prompting coordination among multiple stages of the PCSC by realizing different benefits of the stakeholders. In addition, it provides the stakeholders with the competitive bidding prices and the evaluation data for the bids quote. Meanwhile, it contributes to the domain knowledge of the PCSC management with regard to the viewpoint of coordination and integration of multiple stages rather than only one stage as well as the dynamic optimization model based on the JIT strategy and the PSO algorithm.

Article
Publication date: 12 December 2023

Mustafa Çimen, Damla Benli, Merve İbiş Bozyel and Mehmet Soysal

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation

Abstract

Purpose

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation operations, induce a significant economic impact. Despite the increasing academic attention to the field, literature still fails to match the needs of and opportunities in the growing industrial practices. In particular, the literature can grow upon the ideas on sustainability, Industry 4.0 and collaboration, which shape future practices not only in logistics but also in many other industries. This review has the potential to enhance and accelerate the development of relevant literature that matches the challenges confronted in industrial problems. Furthermore, this review can help to explore the existing methods, algorithms and techniques employed to address this problem, reveal directions and generate inspiration for potential improvements.

Design/methodology/approach

This study provides a literature review on VAPs, focusing on quantitative models that incorporate any of the following emerging logistics trends: sustainability, Industry 4.0 and logistics collaboration.

Findings

In the literature, sustainability interactions have been limited to environmental externalities (mostly reducing operational-level emissions) and economic considerations; however, emissions generated throughout the supply chain, other environmental externalities such as waste and product deterioration, or the level of stakeholder engagement, etc., are to be monitored in order to achieve overall climate-neutral services to the society. Moreover, even though there are many types of collaboration (such as co-opetition and vertical collaboration) and Industry 4.0 opportunities (such as sharing information and comanaging distribution operations) that could improve vehicle allocation operations, these topics have not yet received sufficient attention from researchers.

Originality/value

The scientific contribution of this study is twofold: (1) This study analyses decision models of each reviewed article in terms of decision variable, constraint and assumption sets, objectives, modeling and solving approaches, the contribution of the article and the way that any of sustainability, Industry 4.0 and collaboration aspects are incorporated into the model. (2) The authors provide a discussion on the gaps in the related literature, particularly focusing on practical opportunities and serving climate-neutrality targets, carried out under four main streams: logistics collaboration possibilities, supply chain risks, smart solutions and various other potential practices. As a result, the review provides several gaps in the literature and/or potential research ideas that can improve the literature and may provide positive industrial impacts, particularly on how logistics collaboration may be further engaged, which supply chain risks are to be incorporated into decision models, and how smart solutions can be employed to cope with uncertainty and improve the effectiveness and efficiency of operations.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 1 February 2004

Guozhong Bai, Jingzhong Mao and Gang Lu

In ordinary transportation problems, it is always supposed that the mileage from every source to every destination is a definite number. But in special conditions, such as…

2295

Abstract

In ordinary transportation problems, it is always supposed that the mileage from every source to every destination is a definite number. But in special conditions, such as transporting emergency materials when natural calamity occurs or transporting military supplies during wartime, carrying network may be destroyed, mileage from some sources to some destinations are no longer definite. It is uncertain, a grey number. In these conditions, transportation capacity is often poor; the problems of optimization become even more important. Obviously, traditional methods are not suitable to solve these problems. In this paper, some methods of optimization for the special transportation problems are given.

Details

Kybernetes, vol. 33 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 August 2022

Ni Qiuping, Tang Yuanxiang, Said Broumi and Vakkas Uluçay

This research attempts to present a solid transportation problem (STP) mechanism in uncertain and indeterminate contexts, allowing decision makers to select their acceptance…

Abstract

Purpose

This research attempts to present a solid transportation problem (STP) mechanism in uncertain and indeterminate contexts, allowing decision makers to select their acceptance, indeterminacy and untruth levels.

Design/methodology/approach

Due to the lack of reliable information, changeable economic circumstances, uncontrolled factors and especially variable conditions of available resources to adapt to the real situations, the authors are faced with a kind of uncertainty and indeterminacy in constraints and the nature of the parameters of STP. Therefore, an approach based on neutrosophic logic is offered to make it more applicable to real-world circumstances. In this study, the triangular neutrosophic numbers (TNNs) have been utilized to represent demand, transportation capacity, accessibility and cost. Then, the neutrosophic STP was converted into an interval programming problem with the help of the variation degree concept. Then, two simple linear programming models were extracted to obtain the lower and upper bounds of the optimal solution.

Findings

The results reveal that the new model is not complicated but more flexible and more relevant to real-world issues. In addition, it is evident that the suggested algorithm is effective and allows decision makers to specify their acceptance, indeterminacy and falsehood thresholds.

Originality/value

Under the transportation literature, there are several solutions for TP and STP in crisp, fuzzy set (FS) and intuitionistic fuzzy set (IFS) conditions. However, the STP has never been explored in connection with neutrosophic sets to the best of the authors’ knowledge. So, this work tries to fill this gap by coming up with a new way to solve this model using NSs.

Details

Management Decision, vol. 61 no. 2
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 12 July 2021

Yong Peng, Yi Juan Luo, Pei Jiang and Peng Cheng Yong

Distribution of long-haul goods could be managed via multimodal transportation networks where decision-maker has to consider these factors including the uncertainty of…

Abstract

Purpose

Distribution of long-haul goods could be managed via multimodal transportation networks where decision-maker has to consider these factors including the uncertainty of transportation time and cost, the timetable limitation of selected modes and the storage cost incurred in advance or delay arriving of the goods. Considering the above factors comprehensively, this paper establishes a multimodal multi-objective route optimization model which aims to minimize total transportation duration and cost. This study could be used as a reference for decision-maker to transportation plans.

Design/methodology/approach

Monte Carlo (MC) simulation is introduced to deal with transportation uncertainty and the NSGA-II algorithm with an external archival elite retention strategy is designed. An efficient transformation method based on data-drive to overcome the high time-consuming problem brought by MC simulation. Other contribution of this study is developed a scheme risk assessment method for the non-absolutely optimal Pareto frontier solution set obtained by the NSGA-II algorithm.

Findings

Numerical examples verify the effectiveness of the proposed algorithm as it is able to find a high-quality solution and the risk assessment method proposed in this paper can provide support for the route decision.

Originality/value

The impact of timetable on transportation duration is analyzed and making a detailed description in the mathematical model. The uncertain transportation duration and cost are represented by random number that obeys a certain distribution and designed NSGA-II with MC simulation to solve the proposed problem. The data-driven strategy is adopted to reduce the computational time caused by the combination of evolutionary algorithm and MC simulation. The elite retention strategy with external archiving is created to improve the quality of solutions. A risk assessment approach is proposed for the solution scheme and in the numerical simulation experiment.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 20 October 2023

Marisol S. Romero-Mancilla, Kenneth E. Hernandez-Ruiz and Diana L. Huerta-Muñoz

The purpose of this paper is to introduce a three-echelon multimodal transportation problem applied to a humanitarian logistic case study that occurred in Mexico.

Abstract

Purpose

The purpose of this paper is to introduce a three-echelon multimodal transportation problem applied to a humanitarian logistic case study that occurred in Mexico.

Design/methodology/approach

This study develops a methodology combining a transshipment problem and an adaptation of the multidepot heterogeneous fleet vehicle routing problem to construct a mathematical model that incorporates the use of land-based vehicles and drones. The model was applied to the case study of the Earthquake on September 19, 2017, in Mexico, using the Gurobi optimization solver.

Findings

The results ratified the relevance of the study, showing an inverse relationship between transportation costs and delivery time; on the flip side, the model performed in a shorter CPU time with medium and small instances than with large instances.

Research limitations/implications

While the size of the instances limits the use of the model for big-scale problems, this approach manages to provide a good representation of a transportation network during a natural disaster using drones in the last-mile deliveries.

Originality/value

The present study contributes to a model that combines a vehicle routing problem with transshipment, multiple depots and a heterogeneous fleet including land-based vehicles and drones. There are multiple models present in the literature for these types of problems that incorporate the use of these transportation modes; however, to the best of the authors’ knowledge, there are still no proposals similar to this study.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 11 April 2023

Jeen Guo, Pengcheng Xiang, Qiqi Liu and Yun Luo

The purpose of this paper is to propose a method that can calculate the transportation infrastructure network service capacity enhancement given by planned transportation

Abstract

Purpose

The purpose of this paper is to propose a method that can calculate the transportation infrastructure network service capacity enhancement given by planned transportation infrastructure projects construction. Managers can sequence projects more rationally to maximize the construction effectiveness of infrastructure investments.

Design/methodology/approach

This paper designed a computational network simulation software to generate topological networks based on established rules. Based on the topological networks, the software simulated the movement path of users and calculated the average travel time. This software allows the adjustment of parameters to suit different research objectives. The average travel time is used as an evaluation index to determine the most appropriate construction sequence.

Findings

In this paper, the transportation infrastructure network of Sichuan Province in China was used to demonstrate this software. The average travel time of the existing transportation network in Sichuan Province was calculated as 211 min using this software. The high-speed railways from Leshan to Xichang and from Xichang to Yibin had the greatest influence on shortening the average travel time. This paper also measured the changes in the average travel time under two strategies: shortening the maximum and minimum priorities. All the transportation network optimisation plans for Sichuan Province will be somewhere between these two strategies.

Originality/value

The contribution of this research are three aspects: First, a complex network analysis method that can take into account the differences of node elements is proposed. Second, it provides an effective tool for decision makers to plan transportation infrastructure construction. Third, the construction sequence of transportation infrastructure development plan can effect the infrastructure investment effectiveness.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 42000