Search results

1 – 10 of over 27000
Article
Publication date: 30 March 2010

Ricardo de A. Araújo

The purpose of this paper is to present a new quantum‐inspired evolutionary hybrid intelligent (QIEHI) approach, in order to overcome the random walk dilemma for stock market…

1565

Abstract

Purpose

The purpose of this paper is to present a new quantum‐inspired evolutionary hybrid intelligent (QIEHI) approach, in order to overcome the random walk dilemma for stock market prediction.

Design/methodology/approach

The proposed QIEHI method is inspired by the Takens' theorem and performs a quantum‐inspired evolutionary search for the minimum necessary dimension (time lags) embedded in the problem for determining the characteristic phase space that generates the financial time series phenomenon. The approach presented in this paper consists of a quantum‐inspired intelligent model composed of an artificial neural network (ANN) with a modified quantum‐inspired evolutionary algorithm (MQIEA), which is able to evolve the complete ANN architecture and parameters (pruning process), the ANN training algorithm (used to further improve the ANN parameters supplied by the MQIEA), and the most suitable time lags, to better describe the time series phenomenon.

Findings

This paper finds that, initially, the proposed QIEHI method chooses the better prediction model, then it performs a behavioral statistical test to adjust time phase distortions that appear in financial time series. Also, an experimental analysis is conducted with the proposed approach using six real‐word stock market times series, and the obtained results are discussed and compared, according to a group of relevant performance metrics, to results found with multilayer perceptron networks and the previously introduced time‐delay added evolutionary forecasting method.

Originality/value

The paper usefully demonstrates how the proposed QIEHI method chooses the best prediction model for the times series representation and performs a behavioral statistical test to adjust time phase distortions that frequently appear in financial time series.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 12 June 2017

Kehe Wu, Yayun Zhu, Quan Li and Ziwei Wu

The purpose of this paper is to propose a data prediction framework for scenarios which require forecasting demand for large-scale data sources, e.g., sensor networks, securities…

Abstract

Purpose

The purpose of this paper is to propose a data prediction framework for scenarios which require forecasting demand for large-scale data sources, e.g., sensor networks, securities exchange, electric power secondary system, etc. Concretely, the proposed framework should handle several difficult requirements including the management of gigantic data sources, the need for a fast self-adaptive algorithm, the relatively accurate prediction of multiple time series, and the real-time demand.

Design/methodology/approach

First, the autoregressive integrated moving average-based prediction algorithm is introduced. Second, the processing framework is designed, which includes a time-series data storage model based on the HBase, and a real-time distributed prediction platform based on Storm. Then, the work principle of this platform is described. Finally, a proof-of-concept testbed is illustrated to verify the proposed framework.

Findings

Several tests based on Power Grid monitoring data are provided for the proposed framework. The experimental results indicate that prediction data are basically consistent with actual data, processing efficiency is relatively high, and resources consumption is reasonable.

Originality/value

This paper provides a distributed real-time data prediction framework for large-scale time-series data, which can exactly achieve the requirement of the effective management, prediction efficiency, accuracy, and high concurrency for massive data sources.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 10 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Book part
Publication date: 4 July 2019

Utku Kose

It is possible to see effective use of Artificial Intelligence-based systems in many fields because it easily outperforms traditional solutions or provides solutions for the…

Abstract

It is possible to see effective use of Artificial Intelligence-based systems in many fields because it easily outperforms traditional solutions or provides solutions for the problems not previously solved. Prediction applications are a widely used mechanism in research because they allow for forecasting of future states. Logical inference mechanisms in the field of Artificial Intelligence allow for faster and more accurate and powerful computation. Machine Learning, which is a sub-field of Artificial Intelligence, has been used as a tool for creating effective solutions for prediction problems.

In this chapter the authors will focus on employing Machine Learning techniques for predicting data for future states of economic using techniques which include Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, Dynamic Boltzmann Machine, Support Vector Machine, Hidden Markov Model, Bayesian Learning on Gaussian process model, Autoregressive Integrated Moving Average, Autoregressive Model (Poggi, Muselli, Notton, Cristofari, & Louche, 2003), and K-Nearest Neighbor Algorithm. Findings revealed positive results in terms of predicting economic data.

Article
Publication date: 1 May 2019

Ganga D. and Ramachandran V.

The purpose of this paper is to propose an optimal predictive model for the short-term forecast of real-time non-stationary machine variables by combining time series prediction

Abstract

Purpose

The purpose of this paper is to propose an optimal predictive model for the short-term forecast of real-time non-stationary machine variables by combining time series prediction with adaptive algorithms to minimize the error and to improve the prediction accuracy.

Design/methodology/approach

The proposed model is applied for prediction of speed and controller set point of three-phase induction motor operating on closed loop speed control with AC drive and PI controller. At Stage 1, the trend of the machine variables has been extracted and added to auto-regressive moving average (ARMA) time series prediction. ARMA prediction has been carried out using different combinations of AR and MA methods in order to make prediction with less Mean Squared Error (MSE).

Findings

The prediction error indicates the inadequacy of the model to estimate the data characteristics, which has been resolved at the subsequent stage by cascading an adaptive least mean square finite impulse response filter to the time series model. The adaptive filter receives the predicted output including training data and iteratively adjusts its coefficients for zero error convergence.

Research limitations/implications

The componentized data prediction based on time series and cascade adaptive filter algorithm decomposes the non-stationary data characteristics for predictive maintenance. Evaluation of the model with different combination of time series algorithms and parameter settings of adaptive filter has been carried out to illustrate the performance of the prediction model. This prediction accuracy is compared with existing linear adaptive filter prediction using MSE as comparison index. The wide margin in the MSE values substantiates the prediction efficiency of the proposed model for machine data.

Originality/value

This model predicts the dynamic machine data with component decomposition at high accuracy, which enables to interpret the system response under dynamic conditions efficiently.

Details

Journal of Quality in Maintenance Engineering, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 20 November 2020

Lydie Myriam Marcelle Amelot, Ushad Subadar Agathee and Yuvraj Sunecher

This study constructs time series model, artificial neural networks (ANNs) and statistical topologies to examine the volatility and forecast foreign exchange rates. The Mauritian…

Abstract

Purpose

This study constructs time series model, artificial neural networks (ANNs) and statistical topologies to examine the volatility and forecast foreign exchange rates. The Mauritian forex market has been utilized as a case study, and daily data for nominal spot rate (during a time period of five years spanning from 2014 to 2018) for EUR/MUR, GBP/MUR, CAD/MUR and AUD/MUR have been applied for the predictions.

Design/methodology/approach

Autoregressive integrated moving average (ARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH) models are used as a basis for time series modelling for the analysis, along with the non-linear autoregressive network with exogenous inputs (NARX) neural network backpropagation algorithm utilizing different training functions, namely, Levenberg–Marquardt (LM), Bayesian regularization and scaled conjugate gradient (SCG) algorithms. The study also features a hybrid kernel principal component analysis (KPCA) using the support vector regression (SVR) algorithm as an additional statistical tool to conduct financial market forecasting modelling. Mean squared error (MSE) and root mean square error (RMSE) are employed as indicators for the performance of the models.

Findings

The results demonstrated that the GARCH model performed better in terms of volatility clustering and prediction compared to the ARIMA model. On the other hand, the NARX model indicated that LM and Bayesian regularization training algorithms are the most appropriate method of forecasting the different currency exchange rates as the MSE and RMSE seemed to be the lowest error compared to the other training functions. Meanwhile, the results reported that NARX and KPCA–SVR topologies outperformed the linear time series models due to the theory based on the structural risk minimization principle. Finally, the comparison between the NARX model and KPCA–SVR illustrated that the NARX model outperformed the statistical prediction model. Overall, the study deduced that the NARX topology achieves better prediction performance results compared to time series and statistical parameters.

Research limitations/implications

The foreign exchange market is considered to be instable owing to uncertainties in the economic environment of any country and thus, accurate forecasting of foreign exchange rates is crucial for any foreign exchange activity. The study has an important economic implication as it will help researchers, investors, traders, speculators and financial analysts, users of financial news in banking and financial institutions, money changers, non-banking financial companies and stock exchange institutions in Mauritius to take investment decisions in terms of international portfolios. Moreover, currency rates instability might raise transaction costs and diminish the returns in terms of international trade. Exchange rate volatility raises the need to implement a highly organized risk management measures so as to disclose future trend and movement of the foreign currencies which could act as an essential guidance for foreign exchange participants. By this way, they will be more alert before conducting any forex transactions including hedging, asset pricing or any speculation activity, take corrective actions, thus preventing them from making any potential losses in the future and gain more profit.

Originality/value

This is one of the first studies applying artificial intelligence (AI) while making use of time series modelling, the NARX neural network backpropagation algorithm and hybrid KPCA–SVR to predict forex using multiple currencies in the foreign exchange market in Mauritius.

Details

African Journal of Economic and Management Studies, vol. 12 no. 1
Type: Research Article
ISSN: 2040-0705

Keywords

Article
Publication date: 20 March 2024

Gang Yu, Zhiqiang Li, Ruochen Zeng, Yucong Jin, Min Hu and Vijayan Sugumaran

Accurate prediction of the structural condition of urban critical infrastructure is crucial for predictive maintenance. However, the existing prediction methods lack precision due…

46

Abstract

Purpose

Accurate prediction of the structural condition of urban critical infrastructure is crucial for predictive maintenance. However, the existing prediction methods lack precision due to limitations in utilizing heterogeneous sensing data and domain knowledge as well as insufficient generalizability resulting from limited data samples. This paper integrates implicit and qualitative expert knowledge into quantifiable values in tunnel condition assessment and proposes a tunnel structure prediction algorithm that augments a state-of-the-art attention-based long short-term memory (LSTM) model with expert rating knowledge to achieve robust prediction results to reasonably allocate maintenance resources.

Design/methodology/approach

Through formalizing domain experts' knowledge into quantitative tunnel condition index (TCI) with analytic hierarchy process (AHP), a fusion approach using sequence smoothing and sliding time window techniques is applied to the TCI and time-series sensing data. By incorporating both sensing data and expert ratings, an attention-based LSTM model is developed to improve prediction accuracy and reduce the uncertainty of structural influencing factors.

Findings

The empirical experiment in Dalian Road Tunnel in Shanghai, China showcases the effectiveness of the proposed method, which can comprehensively evaluate the tunnel structure condition and significantly improve prediction performance.

Originality/value

This study proposes a novel structure condition prediction algorithm that augments a state-of-the-art attention-based LSTM model with expert rating knowledge for robust prediction of structure condition of complex projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 December 2019

Zahra Moeini Najafabadi, Mehdi Bijari and Mehdi Khashei

This study aims to make investment decisions in stock markets using forecasting-Markowitz based decision-making approaches.

Abstract

Purpose

This study aims to make investment decisions in stock markets using forecasting-Markowitz based decision-making approaches.

Design/methodology/approach

The authors’ approach offers the use of time series prediction methods including autoregressive, autoregressive moving average and artificial neural network, rather than calculating the expected rate of return based on distribution.

Findings

The results show that using time series prediction methods has a significant effect on improving investment decisions and the performance of the investments.

Originality/value

In this study, in contrast to previous studies, the alteration in the Markowitz model started with the investment expected rate of return. For this purpose, instead of considering the distribution of returns and determining the expected returns, time series prediction methods were used to calculate the future return of each asset. Then, the results of different time series methods replaced the expected returns in the Markowitz model. Finally, the overall performance of the method, as well as the performance of each of the prediction methods used, was examined in relation to nine stock market indices.

Article
Publication date: 2 January 2023

Yanqing Shi, Hongye Cao and Si Chen

Online question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of…

Abstract

Purpose

Online question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of online knowledge systems and explore the final or progressive state of system development. By measuring the nonlinear characteristics of knowledge systems from the perspective of complexity science, the authors aim to enrich the perspective and method of the research on the dynamics of knowledge systems, and to deeply understand the behavior rules of knowledge systems.

Design/methodology/approach

The authors collected data from the programming-related Q&A site Stack Overflow for a ten-year period (2008–2017) and included 48,373 tags in the analyses. The number of tags is taken as the time series, the correlation dimension and the maximum Lyapunov index are used to examine the chaos of the system and the Volterra series multistep forecast method is used to predict the system state.

Findings

There are strange attractors in the system, the whole system is complex but bounded and its evolution is bound to approach a relatively stable range. Empirical analyses indicate that chaos exists in the process of knowledge sharing in this social labeling system, and the period of change over time is about one week.

Originality/value

This study contributes to revealing the evolutionary cycle of knowledge stock in online knowledge systems and further indicates how this dynamic evolution can help in the setting of platform mechanics and resource inputs.

Details

Aslib Journal of Information Management, vol. 76 no. 1
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 8 September 2023

Xiancheng Ou, Yuting Chen, Siwei Zhou and Jiandong Shi

With the continuous growth of online education, the quality issue of online educational videos has become increasingly prominent, causing students in online learning to face the…

Abstract

Purpose

With the continuous growth of online education, the quality issue of online educational videos has become increasingly prominent, causing students in online learning to face the dilemma of knowledge confusion. The existing mechanisms for controlling the quality of online educational videos suffer from subjectivity and low timeliness. Monitoring the quality of online educational videos involves analyzing metadata features and log data, which is an important aspect. With the development of artificial intelligence technology, deep learning techniques with strong predictive capabilities can provide new methods for predicting the quality of online educational videos, effectively overcoming the shortcomings of existing methods. The purpose of this study is to find a deep neural network that can model the dynamic and static features of the video itself, as well as the relationships between videos, to achieve dynamic monitoring of the quality of online educational videos.

Design/methodology/approach

The quality of a video cannot be directly measured. According to previous research, the authors use engagement to represent the level of video quality. Engagement is the normalized participation time, which represents the degree to which learners tend to participate in the video. Based on existing public data sets, this study designs an online educational video engagement prediction model based on dynamic graph neural networks (DGNNs). The model is trained based on the video’s static features and dynamic features generated after its release by constructing dynamic graph data. The model includes a spatiotemporal feature extraction layer composed of DGNNs, which can effectively extract the time and space features contained in the video's dynamic graph data. The trained model is used to predict the engagement level of learners with the video on day T after its release, thereby achieving dynamic monitoring of video quality.

Findings

Models with spatiotemporal feature extraction layers consisting of four types of DGNNs can accurately predict the engagement level of online educational videos. Of these, the model using the temporal graph convolutional neural network has the smallest prediction error. In dynamic graph construction, using cosine similarity and Euclidean distance functions with reasonable threshold settings can construct a structurally appropriate dynamic graph. In the training of this model, the amount of historical time series data used will affect the model’s predictive performance. The more historical time series data used, the smaller the prediction error of the trained model.

Research limitations/implications

A limitation of this study is that not all video data in the data set was used to construct the dynamic graph due to memory constraints. In addition, the DGNNs used in the spatiotemporal feature extraction layer are relatively conventional.

Originality/value

In this study, the authors propose an online educational video engagement prediction model based on DGNNs, which can achieve the dynamic monitoring of video quality. The model can be applied as part of a video quality monitoring mechanism for various online educational resource platforms.

Details

International Journal of Web Information Systems, vol. 19 no. 5/6
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 15 March 2011

Yi‐Hui Liang

The purpose of this study is to propose the time series decomposition approach to analyze and predict the failure data of the repairable systems.

1418

Abstract

Purpose

The purpose of this study is to propose the time series decomposition approach to analyze and predict the failure data of the repairable systems.

Design/methodology/approach

This study employs NHPP to model the failure data. Initially, Nelson's graph method is employed to estimate the mean number of repairs and the MCRF value for the repairable system. Second, the time series decomposition approach is employed to predict the mean number of repairs and MCRF values.

Findings

The proposed method can analyze and predict the reliability for repairable systems. It can analyze the combined effect of trend‐cycle components and the seasonal component of the failure data.

Research limitations/implications

This study only adopts simulated data to verify the proposed method. Future research may use other real products' failure data to verify the proposed method. The proposed method is superior to ARIMA and neural network model prediction techniques in the reliability of repairable systems.

Practical implications

Results in this study can provide a valuable reference for engineers when constructing quality feedback systems for assessing current quality conditions, providing logistical support, correcting product design, facilitating optimal component‐replacement and maintenance strategies, and ensuring that products meet quality requirements.

Originality/value

The time series decomposition approach was used to model and analyze software aging and software failure in 2007. However, the time series decomposition approach was rarely used for modeling and analyzing the failure data for repairable systems. This study proposes the time series decomposition approach to analyze and predict the failure data of the repairable systems and the proposed method is better than the ARIMA model and neural networks in predictive accuracy.

Details

International Journal of Quality & Reliability Management, vol. 28 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 27000