Search results

1 – 10 of over 23000
Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Zuraihana Bachok, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani, Mohamad Riduwan Ramli and Muhamed Abdul Fatah bin Muhamed Mukhtar

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Abstract

Purpose

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Design/methodology/approach

Specimens of the capacitor assembly were subjected to JEDEC level 1 preconditioning (85 °C/85%RH/168 h) with 5× reflow at 270°C peak temperature. Then, they were inspected using a 2 µm scanning electron microscope to investigate the evidence of defects. The reliability test was also numerically simulated and analyzed using the extended finite element method implemented in ABAQUS.

Findings

Excellent agreements were observed between the SEM inspections and the simulation results. The findings showed evidence of discontinuities along the Cu and the Cu-epoxy layers and interfacial delamination crack at the Cu/Cu-epoxy interface. The possible root causes are thermal mismatch between the Cu and Cu-epoxy layers, moisture contamination and weak Cu/Cu-epoxy interface. The maximum crack length observed in the experimentally reflowed capacitor was measured as 75 µm, a 2.59% difference compared to the numerical prediction of 77.2 µm.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time in investigating reliability issues in MLCCs.

Originality/value

Despite the significant number of works on the reliability assessment of surface mount capacitors, work on crack growth in soft-termination MLCC is limited. Also, the combined experimental and numerical investigation of reflow-induced reliability issues in soft-termination MLCC is limited. These cited gaps are the novelties of this study.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 26 April 2024

Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…

Abstract

Purpose

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.

Design/methodology/approach

The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.

Findings

The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.

Originality/value

Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 April 2024

Ghada Karaki, Rami A. Hawileh and M.Z. Naser

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete…

Abstract

Purpose

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete (RC) walls.

Design/methodology/approach

The study performs an one-at-a-time (OAT) sensitivity analysis to assess the impact of variables defining the constitutive and parametric fire models on the wall's thermal response. Moreover, it extends the sensitivity analysis to a variance-based analysis to assess the effect of constitutive model type, fire model type and constitutive model uncertainty on the RC wall's thermal response variance. The study determines the wall’s thermal behaviour reliability considering the different constitutive models and their uncertainty.

Findings

It is found that the impact of the variability in concrete’s conductivity is determined by its temperature-dependent model, which differs for NSC and HSC. Therefore, more testing and improving material modelling are needed. Furthermore, the heating rate of the fire scenario is the dominant factor in deciding fire-resistance performance because it is a causal factor for spalling in HSC walls. And finally the reliability of wall's performance decreased sharply for HSC walls due to the expected spalling of the concrete and loss of cross-section integrity.

Originality/value

Limited studies in the current open literature quantified the impact of constitutive models on the behaviour of RC walls. No studies have examined the effect of material models' uncertainty on wall’s response reliability under fire. Furthermore, the study's results contribute to the ongoing attempts to shape performance-based structural fire engineering.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 2005

K. Jeevan, G.A. Quadir, K.N. Seetharamu, I.A. Azid and Z.A. Zainal

To determine the optimal dimensions for a stacked micro‐channel using the genetic algorithms (GAs) under different flow constraints.

Abstract

Purpose

To determine the optimal dimensions for a stacked micro‐channel using the genetic algorithms (GAs) under different flow constraints.

Design/methodology/approach

GA is used as an optimization tool for optimizing the thermal resistance of a stacked micro‐channel under different flow constraints obtained by using the one dimensional (1D) and two dimensional (2D) finite element methods (FEM) and by thermal resistance network model as well (proposed by earlier researcher). The 2D FEM is used to study the effect of two dimensional heat conduction in the micro‐channel material. Some parametric studies are carried out to determine the resulting performance of the stacked micro‐channel. Different number of layers of the stacked micro‐channel is also investigated to study its effect on the minimum thermal resistance.

Findings

The results obtained from the 1D FEM analysis compare well with those obtained from the thermal resistance network model. However, the 2D FEM analysis results in lower thermal resistance and, therefore, the importance of considering the conduction in two dimensions in the micro‐channel is highlighted.

Research limitations/implication

The analysis is valid for constant properties fluid and for steady‐state conditions. The top‐most surfaces as well as the side surfaces of the micro‐channel are considered adiabatic.

Practical implications

The method is very useful for practical design of micro‐channel heat‐sinks.

Originality/value

FEM analyses of stacked micro‐channel can be easily implemented in the optimization procedure for obtaining the dimensions of the stacked micro‐channel heat‐sinks for minimum thermal resistance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 August 2018

Zimin Jin, Lei Lei, Haitao Meng, Li Gao and Yuxiu Yan

The purpose of this paper is to measure the thermal and moisture resistance of the knitted upper fabrics with the foot model, which provided basis for designing and producing…

Abstract

Purpose

The purpose of this paper is to measure the thermal and moisture resistance of the knitted upper fabrics with the foot model, which provided basis for designing and producing sports shoes with thermal-moisture comfort.

Design/methodology/approach

In this paper, different yarn materials and fabric stitches were selected as the changing factors. The three kinds of yarn materials and the three kinds of fabric stitches were combined to design and weave eight pieces of knitted upper fabrics. Human sweating was simulated by the thermal-moisture comfort foot model, and then tested the thermal and moisture resistance of eight pieces of fabrics in different parts of the foot. Finally, the relationship between yarn material, fabric stitch, and the thermal and moisture resistance in different parts of the foot was analyzed by data.

Findings

The composition of the yarn material and fabric stitch has certain effect on the thermal-moisture comfort in different sections of the foot. When the yarn material of the four parts of the lateral arch, medial arch, ankle and heel is composed of 31.1tex moisture wicking polyester/33.3tex spandex coated yarn, the yarn material of the instep and toes is composed of 31.1tex ordinary polyester/33.3tex spandex coated yarn, and all parts of fabric stitch choose single-sided loop transfer stitch, the knitted sports shoes have the best thermal-moisture comfort.

Originality/value

The study used the thermal-moisture comfort foot model to simulate the human body metabolism and sweating system. Through the quantitative analyze of the thermal and moisture resistance of knitted upper fabrics to provide basis for the producers to design and product knitted sports shoes with good thermal-moisture comfort.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 July 2007

Kaiçar Ammous, Slim Abid and Anis Ammous

The paper aims to focus on the semiconductor temperature prediction in the multichip modules by using a simplified 1D model, easy to implement in the electronic simulation tools.

Abstract

Purpose

The paper aims to focus on the semiconductor temperature prediction in the multichip modules by using a simplified 1D model, easy to implement in the electronic simulation tools.

Design/methodology/approach

Accurate prediction of temperature variation of power semiconductor devices in power electronic circuits is important for obtaining optimum designs and estimating reliability levels. Temperature estimation of power electronic devices has generally been performed using transient thermal equivalent circuits. This paper has studied the thermal behaviour of the power modules. The study leads to correcting the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on multidimensional thermal phenomena in the structure.

Findings

The classic analysis of thermal phenomena in the multichip structures, independently of powers’ dissipated magnitude and boundary conditions, is not correct. An advanced 1D thermal model based on the finite element method is proposed. It takes into account the effect of the heat‐spreading angle of the different devices in the module.

Originality/value

The paper focuses on mathematical model of the thermal behaviour in the power module. The study leads to a correction of the junction temperature values estimated from the transient thermal impedance of each component given by manufacturers. The proposed model gives a good trade‐off between accuracy, efficiency and simulation cost.

Details

Microelectronics International, vol. 24 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 18 September 2009

Jianbiao Pan, Tzu‐Chien Chou, Jasbir Bath, Dennis Willie and Brian J. Toleno

The purpose of this paper is to investigate the effects of reflow time, reflow peak temperature, thermal shock and thermal aging on the intermetallic compound (IMC) thickness for…

Abstract

Purpose

The purpose of this paper is to investigate the effects of reflow time, reflow peak temperature, thermal shock and thermal aging on the intermetallic compound (IMC) thickness for Sn3.0Ag0.5Cu (SAC305) soldered joints.

Design/methodology/approach

A four‐factor factorial design with three replications is selected in the experiment. The input variables are the peak temperature, the duration of time above solder liquidus temperature (TAL), solder alloy and thermal shock. The peak temperature has three levels, 12, 22 and 32°C above solder liquidus temperatures (or 230, 240 and 250°C for SAC305 and 195, 205, and 215°C for SnPb). The TAL has two levels, 30 and 90 s. The thermally shocked test vehicles are subjected to air‐to‐air thermal shock conditioning from −40 to 125°C with 30 min dwell times (or 1 h/cycle) for 500 cycles. Samples both from the initial time zero and after thermal shock are cross‐sectioned. The IMC thickness is measured using scanning electron microscopy. Statistical analyses are conducted to compare the difference in IMC thickness growth between SAC305 solder joints and SnPb solder joints, and the difference in IMC thickness growth between after thermal shock and after thermal aging.

Findings

The IMC thickness increases with higher reflow peak temperature and longer time above liquidus. The IMC layer of SAC305 soldered joints is statistically significantly thicker than that of SnPb soldered joints when reflowed at comparable peak temperatures above liquidus and the same time above liquidus. Thermal conditioning leads to a smoother and thicker IMC layer. Thermal shock contributes to IMC growth merely through high‐temperature conditioning. The IMC thickness increases in SAC305 soldered joints after thermal shock or thermal aging are generally in agreement with prediction models such as that proposed by Hwang.

Research limitations/implications

It is still unknown which thickness of IMC layer could result in damage to the solder.

Practical implications

The IMC thickness of all samples is below 3 μm for both SnPb and SAC305 solder joints reflowed at the peak temperature ranging from 12 to 32°C above liquidus temperature and at times above liquidus ranging from 30 to 90 s. The IMC thickness is below 4 μm after subjecting to air‐to‐air thermal shock from −40 to 125°C with 30 min dwell time for 500 cycles or thermal aging at 125°C for 250 h.

Originality/value

The paper reports experimental results of IMC thickness at different thermal conditions. The application is useful for understanding the thickness growth of the IMC layer at various thermal conditions.

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 5 June 2020

Krzysztof Jakub Stojek, Jan Felba, Johann Nicolics and Dominik Wołczyński

This paper aims to develop thermal analysis method of thermal joints characterization. The impact on convection on thermal resistance analysis with use thermography for…

Abstract

Purpose

This paper aims to develop thermal analysis method of thermal joints characterization. The impact on convection on thermal resistance analysis with use thermography for silver-based thermal joints were investigated for non-metallized and metalized semiconductor surfaces. Heat transfer efficiency depends on thermal conductivity; radiation was used to perform thermographic analysis; the convection is energy loss, so its removing might improve measurements accuracy.

Design/methodology/approach

Investigation of thermal joints analysis method was focused on determination of convection impact on thermal resistance thermographic analysis method. Measuring samples placed in vacuum chamber with lowered pressure requires transparent window for infrared radiation that is used for thermographic analysis. Impact of infrared window and convection on temperature measurements and thermal resistance were referred.

Findings

The results showed that the silicon window allowed to perform thermal analysis through, and the convection was heat transfer mode which create 15% energy loss.

Originality/value

It is possible to measure thermal resistance for silver-based thermal joints with convection eliminated to improve measurements accuracy.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 23000