Search results

1 – 10 of 965
Article
Publication date: 3 April 2023

Dangshu Wang, Jiaan Yi, Luwen Song, Xuan Deng, Xinxia Wang and Zhen Dong

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Abstract

Purpose

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Design/methodology/approach

This paper proposes a simple and reliable two-stage isolated inverter composed of series quasi-resonant push-pull and external freewheeling diode full-bridge inverter. The power supply topology is analyzed, the topology mode is analyzed, the mathematical model of the converter is established and the DC gain of the converter is deduced. The relationship between the load and the output gain of the resonant tank is presented, a new resonant parameter design method is proposed, and the parameter design of the resonant element of the converter is clarified.

Findings

The resonant components of the converter are designed according to the proposed resonant parameter design method, and the correctness of the method is verified by simulation and the development and testing of a 500 W experimental prototype. After experimental tests, the peak efficiency of the experimental prototype can reach 94%. Because the experimental prototype achieves soft switching, the heat generation of the switch is greatly reduced, so the heavy heat sink is removed, and the volume is reduced by about 30% compared with the traditional power supply, and the total harmonic distortion of the output voltage is about 2%.

Originality/value

The feasibility of the scheme is verified by experiments, which is of great significance for improving the efficiency of the inverter power supply and parameter optimization.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 29 September 2022

Yifeng Zhu, Ziyang Zhang, Hailong Zhao and Shaoling Li

Five-level rectifiers have received widespread attention because of their excellent performance in high-voltage and high-power applications. Taking a five-level rectifier with…

Abstract

Purpose

Five-level rectifiers have received widespread attention because of their excellent performance in high-voltage and high-power applications. Taking a five-level rectifier with only four-IGBT for this study, a sliding mode predictive control (SMPC) algorithm is proposed to solve the problem of poor dynamic performance and poor anti-disturbance ability under the traditional model predictive control with the PI outer loop.

Design/methodology/approach

First, mathematical models under the two-phase stationary coordinate system and two-phase synchronous rotating coordinate system are established. Then, the design of the outer-loop sliding mode controller is completed by establishing the sliding mode surface and design approach rate. The design of the inner-loop model predictive controller was completed by discretizing the mathematical model equations. The modulation part uses a space vector modulation technique to generate the PWM wave.

Findings

The sliding mode predictive control strategy is compared with the control strategy with a PI outer loop and a model predictive inner loop. The proposed control strategy has a faster dynamic response and stronger anti-interference ability.

Originality/value

For the five-level rectifier, the advantages of fast dynamic influence and parameter insensitivity of sliding mode control are used in the voltage outer loop to replace the traditional PI control, and which is integrated with the model predictive control used in the current inner loop to form a novel control strategy with a faster dynamic response and stronger immunity to disturbances. This novel strategy is called sliding mode predictive control (SMC).

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 13 February 2024

Tarig Zeinelabdeen Yousif Ahmed, Mawahib Eltayeb Ahmed, Quosay A. Ahmed and Asia Adlan Mohamed

The Gulf Cooperation Council (GCC) of countries has some of the highest electricity consumptions and carbon dioxide emissions per capita in the world. This poses a direct…

Abstract

Purpose

The Gulf Cooperation Council (GCC) of countries has some of the highest electricity consumptions and carbon dioxide emissions per capita in the world. This poses a direct challenge to the GCC government’s ability to meet their CO2 reduction targets. In this review paper the current household electricity consumption situation in the GCC is reviewed.

Design/methodology/approach

Three scenarios for reducing energy consumption and CO2 emissions are proposed and evaluated using strengths, weaknesses, opportunities and threats (SWOT) as well as the political, economic, social, technical, legal and environmental (PESTLE) frameworks.

Findings

The first scenario found that using solar Photovoltaic (PV) or hybrid solar PV and wind system to power household lighting could save significant amounts of energy, based on lighting making up between 8% to 30% of electricity consumption in GCC households. The second scenario considers replacement of conventional appliances with energy-efficient ones that use around 20% less energy. The third scenario looks at influencing consumer behavior towards sustainable energy consumption.

Practical implications

Pilot trials of these scenarios are recommended for a number of households. Then the results and feedback could be used to launch the schemes GCC-wide.

Social implications

The proposed scenarios are designed to encourage responsible electricity consumption and production within households (SDG12).

Originality/value

All three proposals are found viable for policymakers to implement. However, to ensure successful implementation GCC Governments are recommended to review all the opportunities and challenges associated with these schemes as laid out in this paper.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 20 February 2024

Safaa Alwedyan

Given the rapid increase in energy consumption in the residential sector in Jordan recently, the question of how to promote energy-saving behavior in Jordanian households is an…

Abstract

Purpose

Given the rapid increase in energy consumption in the residential sector in Jordan recently, the question of how to promote energy-saving behavior in Jordanian households is an emerging topic that is receiving increasing attention from scholars and academics. Generally, there is an unresolved paradox in the literature concerning electricity-saving behaviors. On one hand, numerous studies highlight energy-saving behaviors. On the other hand, recent research indicates the presence of significant untapped potential in electricity-saving behaviors. Therefore, it is useful to revisit the construct of these behaviors qualitatively to expand understanding. The study aimed to provide a better understanding of electricity energy-saving behaviors in terms of its motivations, barriers and support mechanisms from household heads' or household members' perspectives

Design/methodology/approach

Qualitative study in a sample of households in north Jordan was conducted in the Irbid province using grounded theory methodology. The analysis of qualitative data involved coding, followed by the integration of codes into more comprehensive categories and themes and interpreting the findings.

Findings

The results identify the motivations for households to save energy, the main barriers to indulging in electricity energy-saving behaviors, and the main support mechanisms and perceived support of electricity energy-saving behaviors

Practical implications

The findings bear significant implications for targeted interventions in the study area, improving motivations and addressing local barriers and can inform future policy issues by tailoring initiatives to the specific context.

Originality/value

This study is distinguished by being the first study that specializes in electricity energy-saving behavior of households in Jordan, using new methodology and techniques (qualitative survey).

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 31 January 2024

Dangshu Wang, Menghu Chang, Licong Zhao, Yuxuan Yang and Zhimin Guan

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board…

Abstract

Purpose

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board chargers, there are issues with wide frequency adjustment ranges and low conversion efficiency.

Design/methodology/approach

To address these issues, this paper proposes a fixed-frequency pulse width modulation (PWM) control strategy for a full-bridge LLC resonant converter, which adjusts the gain by adjusting the duty cycle of the switches. In the full-bridge LLC converter, the two switches of the lower bridge arm are controlled by a fixed-frequency and fixed duty cycle, with their switching frequency equal to the resonant frequency, whereas the two switches of the upper bridge arm are controlled by a fixed-frequency PWM to adjust the output voltage. The operation modes of the converter are analyzed in detail, and a mathematical model of the converter is established. The gain characteristics of the converter under the fixed-frequency PWM control strategy are deeply analyzed, and the conditions for implementing zero-voltage switching (ZVS) soft switching in the converter are also analyzed in detail. The use of fixed-frequency PWM control simplifies the design of resonant parameters, and the fixed-frequency control is conducive to the design of magnetic components.

Findings

According to the fixed-frequency PWM control strategy proposed in this paper, the correctness of the control strategy is verified through simulation and the development and testing of a 500-W experimental prototype. Test results show that the primary side switches of the converter achieve ZVS and the secondary side rectifier diodes achieve zero-current switching, effectively reducing the switching losses of the converter. In addition, the control strategy reduces the reactive circulating current of the converter, and the peak efficiency of the experimental prototype can reach 95.2%.

Originality/value

The feasibility of the fixed-frequency PWM control strategy was verified through experiments, which has significant implications for improving the efficiency of the converter and simplifying the design of resonant parameters and magnetic components in wide output voltage fields such as on-board chargers.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 December 2023

Ahmed M. Attia, Ahmad O. Alatwi, Ahmad Al Hanbali and Omar G. Alsawafy

This research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.

Abstract

Purpose

This research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.

Design/methodology/approach

A mixed-integer nonlinear programming (MINLP) model is developed to study the relation between production makespan, energy consumption, maintenance actions and footprint, i.e. service level and sustainability measures. The speed scaling technique is used to control energy consumption, the capping policy is used to control CO2 footprint and preventive maintenance (PM) is used to keep the machine working in healthy conditions.

Findings

It was found that ignoring maintenance activities increases the schedule makespan by more than 21.80%, the total maintenance time required to keep the machine healthy by up to 75.33% and the CO2 footprint by 15%.

Research limitations/implications

The proposed optimization model can simultaneously be used for maintenance planning, job scheduling and footprint minimization. Furthermore, it can be extended to consider other maintenance activities and production configurations, e.g. flow shop or job shop scheduling.

Practical implications

Maintenance planning, production scheduling and greenhouse gas (GHG) emissions are intertwined in the industry. The proposed model enhances the performance of the maintenance and production systems. Furthermore, it shows the value of conducting maintenance activities on the machine's availability and CO2 footprint.

Originality/value

This work contributes to the literature by combining maintenance planning, single-machine scheduling and environmental aspects in an integrated MINLP model. In addition, the model considers several practical features, such as machine-aging rate, speed scaling technique to control emissions, minimal repair (MR) and PM.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 21 September 2023

Haoju Xie and Xingyu Feng

This study aims to illustrate the mechanisms underlying the effect of stress on flow states in the context of a multilevel organization, in which case employees' perseverative…

Abstract

Purpose

This study aims to illustrate the mechanisms underlying the effect of stress on flow states in the context of a multilevel organization, in which case employees' perseverative cognition and reactions to challenge–hindrance stressors are affected by leader mindfulness.

Design/methodology/approach

Study 1 employed a three-wave time-lag survey, and study 2 conducted a diary study across 10 workdays to replicate the results of study 1. Multilevel structural equation modeling and Monte Carlo simulation were performed using Mplus 8.0 software to test all hypotheses.

Findings

Problem-solving pondering transmits the nonlinear effect of challenge stressors on flow, and affective rumination mediates the negative effect of hindrance stressors on flow. Leader mindfulness amplifies the tendency of followers to ruminate on the positive aspects of challenge stressors, consequently increasing their positive reactions and flow. Although leader mindfulness fails to influence followers to ruminate less on hindrance stressors, it negates the harmful effect of affective rumination on the flow experience.

Originality/value

This study is one of the first to examine the associations between stressor types and flow in the workplace. The authors also develop a new theory that highlights the ability of leader mindfulness to shape subordinates' stress, cognitions and reactions through social modeling and the authors identify the boundaries of its beneficial effects.

Details

Journal of Managerial Psychology, vol. 39 no. 3
Type: Research Article
ISSN: 0268-3946

Keywords

Article
Publication date: 15 February 2024

Ali Hashemi, Hamed Taheri and Mohammad Dehghani

To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit…

Abstract

Purpose

To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit. This paper aims to investigate the effect of switching on the thermal behavior of impregnated and nonimpregnated windings. Also, the safe operating time for each winding is determined.

Design/methodology/approach

The power loss of the winding is expressed as a function of the winding specifications. Using homogenization techniques, the equivalent thermal properties for the homogenized winding are calculated and used in a proposed thermal equivalent circuit for winding modeling and analysis. The validity and accuracy of the proposed model are determined by comparing its analysis results and simulation and measurement results.

Findings

The results show that copper windings have better thermal behavior and lower temperature compared to aluminum windings. On the other hand, by impregnating or increasing the packing factor of the winding, the thermal behavior is improved. Also, by choosing the right duty cycle for the winding current source, it is possible to prevent the burning or damage of the winding and increase its lifespan. Comparing the measurement results with the analysis results shows that the proposed equivalent circuit has an error of less than 4% in the calculation of the winding center temperature.

Research limitations/implications

In this paper, the effect of temperature on the electrical resistance of the coil is ignored. Also, rectangular wires were not investigated. Research in these topics are considered as future work.

Originality/value

By calculating the thermal time constant of the winding, its safe operation time can be calculated so that its temperature does not exceed the tolerable value (150 °C). The proposed method analyzes both impregnated and nonimpregnated windings with various schemes. It investigates the effects of switching on their thermal behavior. Additionally, it determines the safe operating time for each type of winding.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 September 2023

Dangshu Wang, Xuan Deng, Zhimin Guan, Shulin Liu, Yaqiang Yang and Xinxia Wang

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant…

50

Abstract

Purpose

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant voltage charging is realized.

Design/methodology/approach

The purpose of this study is to simplify the circuit design and control complexity of the magnetic coupling resonance wireless charging system, in order to achieve constant current and constant voltage charging for wireless energy transmission. First, the principle of LCC/S-S compensation structure is analyzed, and the equivalent mathematical model is established; then, the system characteristics under constant current and constant voltage mode are analyzed, and the design method of system parameters is given; finally, a simulation and experimental system is built to verify the correctness and feasibility of the theoretical analysis.

Findings

The results show that the proposed hybrid topology can achieve a constant current output of 2 A and a constant voltage output of 30 V under variable load conditions, and effectively suppress the current distortion problem under light load conditions. The waveform distortion rate of the inverter current is reduced from 33.97% to 10.45%.

Originality/value

By changing the high-order impedance characteristics of the compensation structure, the distortion of the current waveform under light load is suppressed, and the overall stability and efficiency of the system are improved.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 February 2023

Frank Goethals and Jennifer L. Ziegelmayer

Internet use has a high environmental footprint that is often overlooked by end users. This paper contributes to limiting the negative environmental footprint of Information…

Abstract

Purpose

Internet use has a high environmental footprint that is often overlooked by end users. This paper contributes to limiting the negative environmental footprint of Information Technology (IT) use by understanding the relationship between environmental concerns and use of IT amongst users who are aware of the environmental footprint of IT use. Second, the paper argues that taking environmental concerns into account in technology acceptance studies is relevant, even in studies concerning ordinary IT (i.e. IT not commonly classified as “green” technology).

Design/methodology/approach

The authors conduct two vignette-based surveys in two different countries: the USA and Belgium. Partial least squares structural equation modeling (PLS-SEM) is used to analyse the effect of environmental concerns on the intention to use the webcam during online meetings and binary logistic regression is used to analyse the relationship between environmental concerns and reported actual use of webcams.

Findings

The higher the respondents' environmental concerns, the higher their intention to use internet systems in a more environmentally responsible way, provided the respondents are aware of the environmental footprint of internet system use. Moreover, the higher the respondents’ environmental concerns, the more likely they are to use internet systems in a more environmentally responsible way.

Originality/value

This study is the first to distinguish “Greening of IT Use” from “Greening of IT” and “Greening by IT” and to show that environmental concerns has an impact on the way end users (intend to) use internet systems, provided the users are aware of the environmental footprint of that use.

Details

Information Technology & People, vol. 37 no. 1
Type: Research Article
ISSN: 0959-3845

Keywords

1 – 10 of 965