Search results

1 – 10 of over 11000

Abstract

Details

Machine Learning and Artificial Intelligence in Marketing and Sales
Type: Book
ISBN: 978-1-80043-881-1

Open Access
Article
Publication date: 9 June 2021

Jin Gi Kim, Hyun-Tak Lee and Bong-Gyu Jang

This paper examines whether the successful bid rate of the OnBid public auction, published by Korea Asset Management Corporation, can identify and forecast the Korea…

Abstract

Purpose

This paper examines whether the successful bid rate of the OnBid public auction, published by Korea Asset Management Corporation, can identify and forecast the Korea business-cycle expansion and contraction regimes characterized by the OECD reference turning points. We use logistic regression and support vector machine in performing the OECD regime classification and predicting three-month-ahead regime. We find that the OnBid auction rate conveys important information for detecting the coincident and future regimes because this information might be closely related to deleveraging regarding default on debt obligations. This finding suggests that corporate managers and investors could use the auction information to gauge the regime position in their decision-making. This research has an academic significance that reveals the relationship between the auction market and the business-cycle regimes.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. 29 no. 2
Type: Research Article
ISSN: 1229-988X

Keywords

Article
Publication date: 31 January 2022

Simone Massulini Acosta and Angelo Marcio Oliveira Sant'Anna

Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been…

Abstract

Purpose

Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been proposed in the literature and have gained the attention of many researchers. In this paper, the authors developed machine learning-based control charts for monitoring fraction non-conforming products in smart manufacturing. This study proposed a relevance vector machine using Bayesian sparse kernel optimized by differential evolution algorithm for efficient monitoring in manufacturing.

Design/methodology/approach

A new approach was carried out about data analysis, modelling and monitoring in the manufacturing industry. This study developed a relevance vector machine using Bayesian sparse kernel technique to improve the support vector machine used to both regression and classification problems. The authors compared the performance of proposed relevance vector machine with other machine learning algorithms, such as support vector machine, artificial neural network and beta regression model. The proposed approach was evaluated by different shift scenarios of average run length using Monte Carlo simulation.

Findings

The authors analyse a real case study in a manufacturing company, based on best machine learning algorithms. The results indicate that proposed relevance vector machine-based process monitoring are excellent quality tools for monitoring defective products in manufacturing process. A comparative analysis with four machine learning models is used to evaluate the performance of the proposed approach. The relevance vector machine has slightly better performance than support vector machine, artificial neural network and beta models.

Originality/value

This research is different from the others by providing approaches for monitoring defective products. Machine learning-based control charts are used to monitor product failures in smart manufacturing process. Besides, the key contribution of this study is to develop different models for fault detection and to identify any change point in the manufacturing process. Moreover, the authors’ research indicates that machine learning models are adequate tools for the modelling and monitoring of the fraction non-conforming product in the industrial process.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 29 April 2021

Emmanuel Adinyira, Emmanuel Akoi-Gyebi Adjei, Kofi Agyekum and Frank Desmond Kofi Fugar

Knowledge of the effect of various cash-flow factors on expected project profit is important to effectively manage productivity on construction projects. This study was conducted…

Abstract

Purpose

Knowledge of the effect of various cash-flow factors on expected project profit is important to effectively manage productivity on construction projects. This study was conducted to develop and test the sensitivity of a Machine Learning Support Vector Regression Algorithm (SVRA) to predict construction project profit in Ghana.

Design/methodology/approach

The study relied on data from 150 institutional projects executed within the past five years (2014–2018) in developing the model. Eighty percent (80%) of the data from the 150 projects was used at hyperparameter selection and final training phases of the model development and the remaining 20% for model testing. Using MATLAB for Support Vector Regression, the parameters available for tuning were the epsilon values, the kernel scale, the box constraint and standardisations. The sensitivity index was computed to determine the degree to which the independent variables impact the dependent variable.

Findings

The developed model's predictions perfectly fitted the data and explained all the variability of the response data around its mean. Average predictive accuracy of 73.66% was achieved with all the variables on the different projects in validation. The developed SVR model was sensitive to labour and loan.

Originality/value

The developed SVRA combines variation, defective works and labour with other financial constraints, which have been the variables used in previous studies. It will aid contractors in predicting profit on completion at commencement and also provide information on the effect of changes to cash-flow factors on profit.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2072

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 22 October 2021

Syed Farid Uddin, Ayan Alam Khan, Mohd Wajid, Mahima Singh and Faisal Alam

The purpose of this paper is to show a comparative study of different direction-of-arrival (DOA) estimation techniques, namely, multiple signal classification (MUSIC) algorithm…

1306

Abstract

Purpose

The purpose of this paper is to show a comparative study of different direction-of-arrival (DOA) estimation techniques, namely, multiple signal classification (MUSIC) algorithm, delay-and-sum (DAS) beamforming, support vector regression (SVR), multivariate linear regression (MLR) and multivariate curvilinear regression (MCR).

Design/methodology/approach

The relative delay between the microphone signals is the key attribute for the implementation of any of these techniques. The machine-learning models SVR, MLR and MCR have been trained using correlation coefficient as the feature set. However, MUSIC uses noise subspace of the covariance-matrix of the signals recorded with the microphone, whereas DAS uses the constructive and destructive interference of the microphone signals.

Findings

Variations in root mean square angular error (RMSAE) values are plotted using different DOA estimation techniques at different signal-to-noise-ratio (SNR) values as 10, 14, 18, 22 and 26dB. The RMSAE curve for DAS seems to be smooth as compared to PR1, PR2 and RR but it shows a relatively higher RMSAE at higher SNR. As compared to (DAS, PR1, PR2 and RR), SVR has the lowest RMSAE such that the graph is more suppressed towards the bottom.

Originality/value

DAS has a smooth curve but has higher RMSAE at higher SNR values. All the techniques show a higher RMSAE at the end-fire, i.e. angles near 90°, but comparatively, MUSIC has the lowest RMSAE near the end-fire, supporting the claim that MUSIC outperforms all other algorithms considered.

Article
Publication date: 24 March 2022

Shu-Ying Lin, Duen-Ren Liu and Hsien-Pin Huang

Financial price forecast issues are always a concern of investors. However, the financial applications based on machine learning methods mainly focus on stock market predictions…

Abstract

Purpose

Financial price forecast issues are always a concern of investors. However, the financial applications based on machine learning methods mainly focus on stock market predictions. Few studies have explored credit risk predictions. Understanding credit risk trends can help investors avoid market risks. The purpose of this study is to investigate the prediction model that can effectively predict credit default swaps (CDS).

Design/methodology/approach

A novel generative adversarial network (GAN) for CDS prediction is proposed. The authors take three features into account that are highly relevant to the future trends of CDS: historical CDS price, news and financial leverage. The main goal of this model is to improve the existing GAN-based regression model by adding finance and news feature extraction approaches. The proposed model adopts an attentional long short-term memory network and convolution network to process historical CDS data and news information, respectively. In addition to enhancing the effectiveness of the GAN model, the authors also design a data sampling strategy to alleviate the overfitting issue.

Findings

The authors conduct an experiment with a real dataset and evaluate the performance of the proposed model. The components and selected features of the model are evaluated for their ability to improve the prediction performance. The experimental results show that the proposed model performs better than other machine learning algorithms and traditional regression GAN.

Originality/value

There are very few studies on prediction models for CDS. With the proposed novel approach, the authors can improve the performance of CDS predictions. The proposed work can thereby increase the commercial value of CDS predictions to support trading decisions.

Details

Data Technologies and Applications, vol. 56 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Book part
Publication date: 6 September 2019

Vivian M. Evangelista and Rommel G. Regis

Machine learning methods have recently gained attention in business applications. We will explore the suitability of machine learning methods, particularly support vector…

Abstract

Machine learning methods have recently gained attention in business applications. We will explore the suitability of machine learning methods, particularly support vector regression (SVR) and radial basis function (RBF) approximation, in forecasting company sales. We compare the one-step-ahead forecast accuracy of these machine learning methods with traditional statistical forecasting techniques such as moving average (MA), exponential smoothing, and linear and quadratic trend regression on quarterly sales data of 43 Fortune 500 companies. Moreover, we implement an additive seasonal adjustment procedure on the quarterly sales data of 28 of the Fortune 500 companies whose time series exhibited seasonality, referred to as the seasonal group. Furthermore, we prove a mathematical property of this seasonal adjustment procedure that is useful in interpreting the resulting time series model. Our results show that the Gaussian form of a moving RBF model, with or without seasonal adjustment, is a promising method for forecasting company sales. In particular, the moving RBF-Gaussian model with seasonal adjustment yields generally better mean absolute percentage error (MAPE) values than the other methods on the sales data of 28 companies in the seasonal group. In addition, it is competitive with single exponential smoothing and better than the other methods on the sales data of the other 15 companies in the non-seasonal group.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-78754-290-7

Keywords

Article
Publication date: 13 April 2023

Mao-Lin Shi, Liye Lv and Lizhang Xu

Extreme support vector regression (ESVR) has been widely used in the design, analysis and optimization of engineering systems of its fast training speed and good computational…

Abstract

Purpose

Extreme support vector regression (ESVR) has been widely used in the design, analysis and optimization of engineering systems of its fast training speed and good computational ability. However, the ESVR model is only able to utilize one-fidelity information of engineering system. To solve this issue, this paper extends extreme support vector regression (ESVR) to a multi-fidelity surrogate (MFS) model which can make use of a few expensive but higher-fidelity (HF) samples and a lot of inaccurate but cheap low-fidelity (LF) samples, named ESVR-MFS.

Design/methodology/approach

In the ESVR-MFS model, a kernel matrix is designed to evaluate the relationship between the HF and LF samples. The root mean square error of HF samples is used as the training error metric, and the optimal hyper-parameters of the kernel matrix are obtained through a heuristic algorithm.

Findings

A number of numerical problems and three engineering problems are used to compare the ESVR-MFS model with the single-fidelity ESVR model and two benchmark MFS models. The results show that the ESVR-MFS model exhibits competitive performance in both numerical cases and practical cases tested in this work.

Practical implications

The proposed approach exhibits great capability for practical multi-fidelity engineering design problems.

Originality/value

A MFS model is proposed based on ESVR, which can make full use of the advantages of both HF data and LF data to achieve optimal results at same or lower cost.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2023

Muhammad Asim, Muhammad Yar Khan and Khuram Shafi

The study aims to investigate the presence of herding behavior in the stock market of UK with a special emphasis on news sentiment regarding the economy. The authors focus on the…

Abstract

Purpose

The study aims to investigate the presence of herding behavior in the stock market of UK with a special emphasis on news sentiment regarding the economy. The authors focus on the news sentiment because in the current digital era, investors take their decision making on the basis of current trends projected by news and media platforms.

Design/methodology/approach

For empirical modeling, the authors use machine learning models to investigate the presence of herding behavior in UK stock market for the period starting from 2006 to 2021. The authors use support vector regression, single layer neural network and multilayer neural network models to predict the herding behavior in the stock market of the UK. The authors estimate the herding coefficients using all the models and compare the findings with the linear regression model.

Findings

The results show a strong evidence of herding behavior in the stock market of the UK during different time regimes. Furthermore, when the authors incorporate the economic uncertainty news sentiment in the model, the results show a significant improvement. The results of support vector regression, single layer perceptron and multilayer perceptron model show the evidence of herding behavior in UK stock market during global financial crises of 2007–08 and COVID’19 period. In addition, the authors compare the findings with the linear regression which provides no evidence of herding behavior in all the regimes except COVID’19. The results also provide deep insights for both individual investors and policy makers to construct efficient portfolios and avoid market crashes, respectively.

Originality/value

In the existing literature of herding behavior, news sentiment regarding economic uncertainty has not been used before. However, in the present era this parameter is quite critical in context of market anomalies hence and needs to be investigated. In addition, the literature exhibits varying results about the existence of herding behavior when different methodologies are used. In this context, the use of machine learning models is quite rare in the herding literature. The machine learning models are quite robust and provide accurate results. Therefore, this research study uses three different models, i.e. single layer perceptron model, multilayer perceptron model and support vector regression model to investigate the herding behavior in the stock market of the UK. A comparative analysis is also presented among the results of all the models. The study sheds light on the importance of economic uncertainty news sentiment to predict the herding behavior.

Details

Review of Behavioral Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1940-5979

Keywords

1 – 10 of over 11000