Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 13 June 2023

Xiaogen Liu, Shuang Qi, Detian Wan and Dezhi Zheng

This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.

Abstract

Purpose

This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.

Design/methodology/approach

In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel, taking the passenger compartment window glass of the CRH3 high speed train on Wuhan–Guangzhou High Speed Railway as the research object, this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit, the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km·h-1.

Findings

The results show that while crossing the tunnel, the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures, which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain. The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa, and the maximum value occurs at the corresponding time of crossing the tunnel groups. The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects, while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel. The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time. The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure. Thus, the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.

Originality/value

The research results provide data support for the analysis of mechanical characteristics, damage mechanism, strength design and structural optimization of high speed train glass.

Open Access
Article
Publication date: 25 July 2023

Azka Umair, Kieran Conboy and Eoin Whelan

Online labour markets (OLMs) have recently become a widespread phenomenon of digital work. While the implications of OLMs on worker well-being are hotly debated, little empirical…

3106

Abstract

Purpose

Online labour markets (OLMs) have recently become a widespread phenomenon of digital work. While the implications of OLMs on worker well-being are hotly debated, little empirical research examines the impact of such work on individuals. The highly competitive and fast-paced nature of OLMs compels workers to multitask and to perform intense technology-enabled work, which can potentially enhance technostress. This paper examines the antecedents and well-being consequences of technostress arising from work in OLMs.

Design/methodology/approach

The authors draw from person–environment fit theory and job characteristics theory and test a research model of the antecedents and consequences of worker technostress in OLMs. Data were gathered from 366 workers in a popular OLM through a large-scale online survey. Structural equation modelling was used to evaluate the research model.

Findings

The findings extend existing research by validating the relationships between specific OLM characteristics and strain. Contrary to previous literature, the results indicate a link between technology complexity and work overload in OLMs. Furthermore, in OLMs, feedback is positively associated with work overload and job insecurity, while strain directly influences workers' negative affective well-being and discontinuous intention.

Originality/value

This study contributes to technostress literature by developing and testing a research model relevant to a new form of work conducted through OLMs. The authors expand the current research on technostress by integrating job characteristics as new antecedents to technostress and demonstrating its impact on different types of subjective well-being and discontinuous intention. In addition, while examining the impact of technostressors on outcomes, the authors consider their impact at the individual level (disaggregated approach) to capture the subtlety involved in understanding technostressors' unique relationships with outcomes.

Open Access
Article
Publication date: 15 August 2023

Ingrid Wahl, Daniel Wolfgruber and Sabine Einwiller

Teleworkers need to use information and communication technology (ICT) to communicate and collaborate with their team members, however, when new and complicated information…

Abstract

Purpose

Teleworkers need to use information and communication technology (ICT) to communicate and collaborate with their team members, however, when new and complicated information systems should be used, this can lead to stress. Receiving adequate information and emotional support from team members could reduce the stress caused by technological complexity and subsequent work and occupational strains.

Design/methodology/approach

Participants (N = 400) teleworked at least half of their working hours and were employed in organizations with a minimum of 250 employees. Data from the online survey were analyzed using structural equation modeling.

Findings

Results demonstrate that aspects of informational and emotional communication contribute to perceived social support from team members, with emotional communication explaining more variance. Stress from technological complexity is mitigated by both supportive team communication and the extent of telework. Perceived stress from technological complexity, however, still increases work and occupational strains.

Practical implications

The findings emphasize the importance of supportive internal communication to foster a collaborative telework environment. Practitioners in internal communication need to encourage teleworkers to help each other with adequate information and provide also emotional support to overcome the negative effects of complex ICT.

Originality/value

The study shows that supportive communication among team members is important for teleworkers to reduce work and occupational strains, especially when facing difficulties with complex ICT.

Details

Corporate Communications: An International Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1356-3289

Keywords

Open Access
Article
Publication date: 15 November 2022

Zhiqiang Zhang, Xingyu Zhu and Ronghua Wei

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and…

Abstract

Purpose

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and misalignment. There is no developed system of fortification and related codes to follow. There are scientific problems and technical challenges in this field that have never been encountered in past research and practices.

Design/methodology/approach

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation based on the open-cut tunnel project of the Urumqi Rail Transit Line 2, which passes through the Jiujiawan normal fault. The test simulated the subway tunnel passing through the normal fault, which is inclined at 60°. This research compared and analyzed the differences in mechanical behavior between two types of lining section: the open-cut double-line box tunnel and the modified double-line box arch tunnel. The structural response and failure characteristics of the open-cut segmented lining of the tunnel under the stick-slip part of the normal fault were studied.

Findings

The results indicated that the double-line box arch tunnel improved the shear and longitudinal bending performance. Longitudinal cracks were mainly distributed in the baseplate, wall foot and arch foot, and the crack position was basically consistent with the longitudinal distribution of surrounding rock pressure. This indicated that the longitudinal cracks were due to the large local load of the cross-section of the structure, leading to an excessive local bending moment of the structure, which resulted in large eccentric failure of the lining and formation of longitudinal cracks. Compared with the ordinary box section tunnel, the improved double-line box arch tunnel significantly reduced the destroyed and damage areas of the hanging wall and footwall. The damage area and crack length were reduced by 39 and 59.3%, respectively. This indicates that the improved double-line box arch tunnel had good anti-sliding performance.

Originality/value

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation. This system increased the similarity ratio of the test model, improved the dislocation loading rate and optimized the simulation scheme of the segmented flexible lining and other key factors affecting the test. It is of great scientific significance and engineering value to investigate the structure of subway tunnels under active fault misalignment, to study its force characteristics and damage modes, and to provide a technical reserve for the design and construction of subway tunnels through active faults.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 23 May 2022

Yangsheng Ye, Degou Cai, Lin Geng, Hongye Yan, Junkai Yao and Feng Chen

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under…

Abstract

Purpose

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under cyclic load.

Design/methodology/approach

According to the basic framework of critical state soil mechanics and in view of the characteristics of the coarse-grained soil filler for the HSR subgrade to bear the train vibration load repeatedly for a long time, the hyperbolic empirical relationship between particle breakage and plastic work was derived. Considering the influence of cyclic vibration time and stress ratio, the particle breakage correction function of coarse-grained soil filler for the HSR subgrade under cyclic load was proposed. According to the classical theory of plastic mechanics, the shearing dilatation equation of the coarse-grained soil filler for the HSR subgrade considering particle breakage was modified and obtained. A semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the HSR subgrade under cyclic load was further established. The backward Euler method was used to discretize the constitutive equation, build a numerical algorithm of “elastic prediction and plastic modification” and make a secondary development of the program to solve the cyclic compaction model.

Findings

Through the comparison with the result of laboratory triaxial test under the cyclic loading of coarse-grained soil filler for the HSR subgrade, the accuracy and applicability of the cyclic compaction model were verified. Results show that the model can accurately predict the cumulative deformation characteristics of coarse-grained soil filler for the HSR subgrade under the train vibration loading repeatedly for a long time. It considers the effects of particle breakage and stress ratio, which can be used to calculate and analyze the stress and deformation evolution law of the subgrade structure for HSR.

Originality/value

The research can provide a simple and practical method for calculating deformation of railway under cyclic loading.

Open Access
Article
Publication date: 13 June 2016

Marcus Achenbach and Guido Morgenthal

The purpose of this paper is to develop a method suitable for the design of reinforced concrete columns subjected to a standard fire.

2993

Abstract

Purpose

The purpose of this paper is to develop a method suitable for the design of reinforced concrete columns subjected to a standard fire.

Design/methodology/approach

The Zone Method – a ’simplified calculation method” included in Eurocode 2 – has been developed by Hertz as a manual calculation scheme for the check of fire resistance of concrete sections. The basic idea is to disregard the thermal strains and to calculate the resistance of a cross-section by reducing the concrete cross-section by a “damaged zone”. It is assumed that all fibers can reach their ultimate, temperature dependent strength. Therefore, it is a plastic concept; the information on the state of strain is lost. The calculation of curvatures and deflections is thus only possible by making further assumptions. Extensions of the zone method toward a general calculation method, suitable for the implementation in commercial design software and using the temperature dependent stress–strain curves of the Advanced Calculation Method, have been developed in Germany. The extension by Cyllok and Achenbach is presented in detail. The necessary assumptions of the Zone Method are reviewed, and an improved proposal for the consideration of the reinforcement in this extended Zone Method is presented.

Findings

The principles and assumptions of the Zone Method proposed by Hertz can be validated.

Originality/value

An extension of the Zone Method suitable for the implementation in design software is proposed.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 14 March 2022

Laura Smeets, Wim Gijselaers, Roger Meuwissen and Therese Grohnert

Learning from errors is a complex process that requires careful support. Building on affective events theory, the purpose of this paper is to explore how a supportive learning…

1106

Abstract

Purpose

Learning from errors is a complex process that requires careful support. Building on affective events theory, the purpose of this paper is to explore how a supportive learning from error climate can contribute to social learning from errors through affective and cognitive error responses by individual professionals.

Design/methodology/approach

A total of 139 early-career auditors completed an online questionnaire consisting of validated survey scales, allowing for serial mediation analysis to compare direct and indirect effects.

Findings

Learning from error climate was directly and positively related to engagement in social learning activities after committing an error. Furthermore, the authors found a double mediation by error strain (an affective error response) and reflecting on errors (a cognitive error response) on this relationship.

Practical implications

Organizations can actively encourage professionals to learn from their errors by creating a supportive learning from error climate and holding professionals accountable for their errors.

Originality/value

The present study enriches the authors’ understanding of the mechanisms through which learning from error climate influences engagement in social learning activities. It extends prior research on learning from errors by investigating the sequential effects of engagement in error-related learning activities performed individually and in social interaction.

Open Access
Article
Publication date: 7 August 2020

Rianne Appel-Meulenbroek, Theo van der Voordt, Rik Aussems, Theo Arentze and Pascale Le Blanc

This paper aims to explore, which characteristics of activity-based offices are related to the position of workers on the burnout – engagement continuum.

5569

Abstract

Purpose

This paper aims to explore, which characteristics of activity-based offices are related to the position of workers on the burnout – engagement continuum.

Design/methodology/approach

Literature review and an online survey amongst knowledge workers in the Netherlands, which provided data of 184 respondents from 14 organisations. The data has been analysed by descriptive statistics, bivariate analyses, factor analyses and path analysis, to test the conceptual model.

Findings

Five physical work environment constructs were identified of which three showed to have significant relations with employees’ position on one of the three dimensions of the burnout – engagement continuum. Distraction has a direct and indirect (through overload) negative relation with the individual strain (meaning increased exhaustion). Office comfort has indirect positive relations (through recognition and appreciation) with the interpersonal strain (meaning increased involvement). The possibility for teleworking has an indirect positive relation (through control) on the self-evaluation strain (meaning increased efficacy).

Practical implications

The findings show that in the design and management of a healthy physical work environment, corporate real estate managers and human resource managers should particularly pay attention to lowering distraction, providing comfortable workplaces and considering the option of teleworking to some extent.

Originality/value

This paper provides new insights into the impact of distinct activity-based workplace characteristics on workers’ position on the burnout – engagement continuum.

Details

Journal of Corporate Real Estate, vol. 22 no. 4
Type: Research Article
ISSN: 1463-001X

Keywords

1 – 10 of over 1000