Search results

1 – 10 of over 96000
Open Access
Article
Publication date: 4 November 2020

Mahmoud Alsaid, Rania M. Kamal and Mahmoud M. Rashwan

This paper presents economic and economic–statistical designs of the adaptive exponentially weighted moving average (AEWMA) control chart for monitoring the process mean. It also…

1042

Abstract

Purpose

This paper presents economic and economic–statistical designs of the adaptive exponentially weighted moving average (AEWMA) control chart for monitoring the process mean. It also aims to compare the effect of estimated process parameters on the economic performance of three charts, which are Shewhart, exponentially weighted moving average and AEWMA control charts with economic–statistical design.

Design/methodology/approach

The optimal parameters of the control charts are obtained by applying the Lorenzen and Vance’s (1986) cost function. Comparisons between the economic–statistical and economic designs of the AEWMA control chart in terms of expected cost and statistical measures are performed. Also, comparisons are made between the economic performance of the three competing charts in terms of the average expected cost and standard deviation of expected cost.

Findings

This paper concludes that taking into account the economic factors and statistical properties in designing the AEWMA control chart leads to a slight increase in cost but in return the improvement in the statistical performance is substantial. In addition, under the estimated parameters case, the comparisons reveal that from the economic point of view the AEWMA chart is the most efficient chart when detecting shifts of different sizes.

Originality/value

The importance of the study stems from designing the AEWMA chart from both economic and statistical points of view because it has not been tackled before. In addition, this paper contributes to the literature by studying the effect of the estimated parameters on the performance of control charts with economic–statistical design.

Details

Review of Economics and Political Science, vol. 6 no. 2
Type: Research Article
ISSN: 2356-9980

Keywords

Article
Publication date: 26 November 2010

Li Xue, Jichao Xu and Yumin Liu

The purpose of this paper is to investigate the economic‐statistical design of EWMA charts with variable sampling intervals (VSIs) under non‐normality to reduce the process…

401

Abstract

Purpose

The purpose of this paper is to investigate the economic‐statistical design of EWMA charts with variable sampling intervals (VSIs) under non‐normality to reduce the process production cycle cost and improve the statistical performance of control charts. The objective is to minimize the cost function by adjusting the control chart parameters which suffice for the statistical restriction.

Design/methodology/approach

First, using the Burr distribution to approximate various non‐normal distributions, the economic‐statistical model of the VSI EWMA charts under non‐normality can be developed. Further, the genetic algorithms will be used to search for the optimal values of parameters of the VSI EWMA charts under non‐normality. Finally, a sensitivity analysis is carried out to investigate the effect of model parameters and statistical restriction on the solution of the economic‐statistical design.

Findings

The result of sensitivity analysis shows that a large lower bound of average time to signal when the process is in control increases the control limit coefficient, no model parameter significantly affects the short sampling intervals, and so on.

Originality/value

The economic‐statistical design method proposed in this paper can improve the statistical performance of economic design of control charts and the general idea can be applied to other VSI control charts.

Details

Asian Journal on Quality, vol. 11 no. 3
Type: Research Article
ISSN: 1598-2688

Keywords

Article
Publication date: 1 April 1993

James H. Thompson and Bart H. Ward

Discusses alternative strategies which may be employed when differences arise between achieved audit‐sampling results and planned results, which means that risk levels used in ex

Abstract

Discusses alternative strategies which may be employed when differences arise between achieved audit‐sampling results and planned results, which means that risk levels used in ex post decision making may be different from planned levels. Contrasts a conventional strategy — which is to fix the risk of incorrect acceptance at a planned level and to ignore the risk of incorrect rejection or to accept the minimum available level of that risk which is consistent, after the fact, with the planned level of risk of incorrect acceptance — with a theoretically appealing strategy which balances both risk levels in proportion to their perceived disutility. Reports on the results of an experiment involving these two strategies, in which all subjects were auditors with statistical audit experience. Suggests that the most important statistically significant finding is that, in certain circumstances, these auditors are more willing to base audit decisions on statistical evidence after the alternative strategy is explained and available for their use.

Details

Managerial Auditing Journal, vol. 8 no. 4
Type: Research Article
ISSN: 0268-6902

Keywords

Article
Publication date: 17 January 2023

Salimeh Sadat Aghili, Mohsen Torabian, Mohammad Hassan Behzadi and Asghar Seif

The purpose of this paper is to develop a double-objective economic statistical design (ESD) of (X…

Abstract

Purpose

The purpose of this paper is to develop a double-objective economic statistical design (ESD) of (X) control chart under Weibull failure properties with the Linex asymmetric loss function. The authors have expressed the probability of type II error (β) as the statistical objective and the expected cost as the economic objective.

Design/methodology/approach

The design used in this study is based on a double-objective economic statistical design of (X) control chart with Weibull shock model via applying Banerjee and Rahim's model for non-uniform and uniform schemes with Linex asymmetric loss function. The results in the least average cost and β in uniform and non-uniform schemes by Linex loss function, compared with the same schemes without loss function.

Findings

Numerical results indicate that it is not possible to reduce the second type of error and costs at the same time, which means that by reducing the second type of error, the cost increases, and by reducing the cost, the second type of error increases, both of which are very important. Obtained based on the needs of the industry and which one has more priority has the right to choose. These designs define a Pareto optimal front of solutions that increase the flexibility and adaptability of the X control chart in practice. When the authors use non-uniform schemes instead of uniform schemes, the average cost per unit time decreases by an average and when the authors apply loss function, the average cost per unit time increases by an average. Also, this quantity for double-objective schemes with loss function compared to without loss function schemes in cases uniform and non-uniform increases. The reason for this result is that the model underestimated the costs before using the loss function.

Practical implications

This research adds to the body of knowledge related to flexibility in process quality control. This article may be of interest to quality systems experts in factories where the choice between cost reduction and statistical factor reduction can affect the production process.

Originality/value

The cost functions for double-objective uniform and non-uniform sampling schemes with the Weibull shock model based on the Linex loss function are presented for the first time.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 February 1991

Mahmoud M. Yasin, Ronald F. Green and Marwan Wafa

The importance of quality and statistical quality control asstrategic tools, well established in the manufacturing community, hasrecently been extended to the service sector. The…

Abstract

The importance of quality and statistical quality control as strategic tools, well established in the manufacturing community, has recently been extended to the service sector. The application of statistical quality control techniques within the banking industry is discussed. Recommendations for establishing a quality control programme within a typical banking service environment are provided.

Details

International Journal of Bank Marketing, vol. 9 no. 2
Type: Research Article
ISSN: 0265-2323

Keywords

Article
Publication date: 4 September 2017

Sagar Sikder, Subhash Chandra Panja and Indrajit Mukherjee

The purpose of this paper is to develop a new easy-to-implement distribution-free integrated multivariate statistical process control (MSPC) approach with an ability to recognize…

Abstract

Purpose

The purpose of this paper is to develop a new easy-to-implement distribution-free integrated multivariate statistical process control (MSPC) approach with an ability to recognize out-of-control points, identify the key influential variable for the out-of-control state, and determine necessary changes to achieve the state of statistical control.

Design/methodology/approach

The proposed approach integrates the control chart technique, the Mahalanobis-Taguchi System concept, the Andrews function plot, and nonlinear optimization for multivariate process control. Mahalanobis distance, Taguchi’s orthogonal array, and the main effect plot concept are used to identify the key influential variable responsible for the out-of-control situation. The Andrews function plot and nonlinear optimization help to identify direction and necessary correction to regain the state of statistical control. Finally, two different real life case studies illustrate the suitability of the approach.

Findings

The case studies illustrate the potential of the proposed integrated multivariate process control approach for easy implementation in varied manufacturing and process industries. In addition, the case studies also reveal that the multivariate out-of-control state is primarily contributed by a single influential variable.

Research limitations/implications

The approach is limited to the situation in which a single influential variable contributes to out-of-control situation. The number and type of cases used are also limited and thus generalization may not be debated. Further research is necessary with varied case situations to refine the approach and prove its extensive applicability.

Practical implications

The proposed approach does not require multivariate normality assumption and thus provides greater flexibility for the industry practitioners. The approach is also easy to implement and requires minimal programming effort. A simple application Microsoft Excel is suitable for online implementation of this approach.

Originality/value

The key steps of the MSPC approach are identifying the out-of-control point, diagnosing the out-of-control point, identifying the “influential” variable responsible for the out-of-control state, and determining the necessary direction and the amount of adjustment required to achieve the state of control. Most of the approaches reported in open literature are focused only until identifying influencing variable, with many restrictive assumptions. This paper addresses all key steps in a single integrated distribution-free approach, which is easy to implement in real time.

Details

International Journal of Quality & Reliability Management, vol. 34 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 21 August 2007

P. Castagliola, G. Celano and S. Fichera

The aim of this study is to present the economic‐statistical design of an EWMA control chart for monitoring the process dispersion.

Abstract

Purpose

The aim of this study is to present the economic‐statistical design of an EWMA control chart for monitoring the process dispersion.

Design/methodology/approach

The optimal economic‐statistical design of the S EWMA chart was determined for a wide benchmark of examples organized as a two level factorial design and was compared with the designs obtained for the S Shewhart chart. Both the two charts have been designed so that an equal number of false alarms (in‐control Average Run Length) is expected.

Findings

The S EWMA allows significant hourly cost savings to be achieved for the entire set of process scenarios with respect to the S Shewhart; a mean percentage cost saving of 6.77 per cent is obtained for processes characterized by a reduction in process dispersion (i.e. processes whose natural variability is reduced through an external technological intervention), whereas up to a 9.78 per cent saving is achieved for processes whose dispersion is increased by the occurrence of an undesired special cause.

Practical implications

The proposed S EWMA chart can be considered as an effective tool when statistical process control procedures should be implemented on a process with the aim of monitoring its data dispersion.

Originality/value

In literature the economic design of EWMA charts covers only the process cost evaluation when the sample mean is monitored; here, the study is extended to the sample standard deviation to investigate if the EWMA scheme still outperforms the Shewhart chart. An extensive analysis is proposed to evaluate the influence of the process operating parameters on the EWMA chart design variables.

Details

Journal of Quality in Maintenance Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 September 1997

States that, in literature, hardly any practical methods, including both methodological and organizational aspects of implementing statistical process control (SPC), are…

2830

Abstract

States that, in literature, hardly any practical methods, including both methodological and organizational aspects of implementing statistical process control (SPC), are described. Presents a method including both aspects. The methodological part consists of a ten‐step method used by multi‐disciplinary teams. The organizational part includes four phases and an organization structure to implement SPC. The method was applied successfully in various organizations. Discusses the experiences and underlying goals of the framework to enhance its applicability in various situations. Finally, attention is given to the use of SPC to set the stage for total quality management.

Details

International Journal of Quality Science, vol. 2 no. 3
Type: Research Article
ISSN: 1359-8538

Keywords

Article
Publication date: 1 October 2018

Aitin Saadatmeli, Mohamad Bameni Moghadam, Asghar Seif and Alireza Faraz

The purpose of this paper is to develop a cost model by the variable sampling interval and optimization of the average cost per unit of time. The paper considers an economic…

Abstract

Purpose

The purpose of this paper is to develop a cost model by the variable sampling interval and optimization of the average cost per unit of time. The paper considers an economic–statistical design of the X̅ control charts under the Burr shock model and multiple assignable causes were considered and compared with three types of prior distribution for the mean shift parameter.

Design/methodology/approach

The design of the modified X̅ chart is based on the two new concepts of adjusted average time to signal and average number of false alarms for X̅ control chart under Burr XII shock model with multiple assignable causes.

Findings

The cost model was examined through a numerical example, with the same cost and time parameters, so the optimal of design parameters were obtained under uniform and non-uniform sampling schemes. Furthermore, a sensitivity analysis was conducted in a way that the variability of loss cost and design parameters was evaluated supporting the changes of cost, time and Burr XII distribution parameters.

Research limitations/implications

The economic–statistical model scheme of X̅ chart was developed for the Burr XII distributed with multiple assignable causes. The correlated data are among the assumptions to be examined. Moreover, the optimal schemes for the economic-statistic chart can be expanded for correlated observation and continuous process.

Practical implications

The economic–statistical design of control charts depends on the process shock model distribution and due to difficulties from both theoretical and practical aspects; one of the proper alternatives may be the Burr XII distribution which is quite flexible. Yet, in Burr distribution context, only one assignable cause model was considered where more realistic approach may be to consider multiple assignable causes.

Originality/value

This study presents an advanced theoretical model for cost model that improved the shock model that presented in the literature. The study obviously indicates important evidence to justify the implementation of cost models in a real-life industry.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 March 2018

Jean-Claude Malela-Majika, Olatunde Adebayo Adeoti and Eeva Rapoo

The purpose of this paper is to develop an exponentially weighted moving average (EWMA) control chart based on the Wilcoxon rank-sum (WRS) statistic using repetitive sampling to…

1599

Abstract

Purpose

The purpose of this paper is to develop an exponentially weighted moving average (EWMA) control chart based on the Wilcoxon rank-sum (WRS) statistic using repetitive sampling to improve the sensitivity of the EWMA control chart to process mean shifts regardless of the prior knowledge of the underlying process distribution.

Design/methodology/approach

The proposed chart is developed without any distributional assumption of the underlying quality process for monitoring the location parameter. The authors developed formulae as well as algorithms to facilitate the design and implementation of the proposed chart. The performance of the proposed chart is investigated in terms of the average run-length, standard deviation of the run-length (RL), average sample size and percentiles of the RL distribution. Numerical examples are given as illustration of the design and implementation of the proposed chart.

Findings

The proposed control chart presents very attractive RL properties and outperforms the existing nonparametric EWMA control chart based on the WRS in the detection of the mean process shifts in many situations. However, the performance of the proposed chart relatively deteriorates for small phase I sample sizes.

Originality/value

This study develops a new control chart for monitoring the process mean using a two-sample test regardless of the nature of the underlying process distribution. The proposed control chart does not require any assumption on the type (or nature) of the process distribution. It requires a small number of subgroups in order to reach stability in the phase II performance.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 96000