Search results

1 – 2 of 2
Article
Publication date: 17 July 2020

Amit Prakash and Vijay Verma

The purpose of this paper is to apply an efficient hybrid computational numerical technique, namely, q-homotopy analysis Sumudu transform method (q-HASTM) and residual power…

Abstract

Purpose

The purpose of this paper is to apply an efficient hybrid computational numerical technique, namely, q-homotopy analysis Sumudu transform method (q-HASTM) and residual power series method (RPSM) for finding the analytical solution of the non-linear time-fractional Hirota–Satsuma coupled KdV (HS-cKdV) equations.

Design/methodology/approach

The proposed technique q-HASTM is the graceful amalgamations of q-homotopy analysis method with Sumudu transform via Caputo fractional derivative, whereas RPSM depend on generalized formula of Taylors series along with residual error function.

Findings

To illustrate and validate the efficiency of the proposed technique, the authors analyzed the projected non-linear coupled equations in terms of fractional order. Moreover, the physical behavior of the attained solution has been captured in terms of plots and by examining the L2 and L error norm for diverse value of fractional order.

Originality/value

The authors implemented two technique, q-HASTM and RPSM to obtain the solution of non-linear time-fractional HS-cKdV equations. The obtained results and comparison between q-HASTM and RPSM, shows that the proposed methods provide the solution of non-linear models in form of a convergent series, without using any restrictive assumption. Also, the proposed algorithm is easy to implement and highly efficient to analyze the behavior of non-linear coupled fractional differential equation arisen in various area of science and engineering.

Article
Publication date: 2 June 2023

Dhabaleswar Mohapatra and Snehashish Chakraverty

Investigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking…

Abstract

Purpose

Investigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking model. Nonetheless, due to observational or experimental errors, or any other circumstance, it may contain some incomplete information. Fuzzy sets can be used to deal with uncertainty. Yet, there may be some inconsistency in the membership as well. As a result, the primary goal of this proposed work is to numerically solve the model in a type-2 fuzzy environment.

Design/methodology/approach

Triangular perfect quasi type-2 fuzzy numbers (TPQT2FNs) are used to deal with the uncertainty in the model. In this work, concepts of r2-cut at r1-plane are used to model the problem's uncertain parameter. The Legendre wavelet method (LWM) is then utilised to solve the giving up smoking model in a type-2 fuzzy environment.

Findings

LWM has been effectively employed in conjunction with the r2-cut at r1-plane notion of type-2 fuzzy sets to solve the model. The LWM has the advantage of converting the non-linear fractional order model into a set of non-linear algebraic equations. LWM scheme solutions are found to be well agreed with RK4 scheme solutions. The existence and uniqueness of the model's solution have also been demonstrated.

Originality/value

To deal with the uncertainty, type-2 fuzzy numbers are used. The use of LWM in a type-2 fuzzy uncertain environment to achieve the model's required solutions is quite fascinating, and this is the key focus of this work.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2