Search results

1 – 10 of 753
Article
Publication date: 30 November 2021

Bence Tipary and Ferenc Gábor Erdős

The purpose of this paper is to propose a novel measurement technique and a modelless calibration method for improving the positioning accuracy of a three-axis parallel kinematic…

Abstract

Purpose

The purpose of this paper is to propose a novel measurement technique and a modelless calibration method for improving the positioning accuracy of a three-axis parallel kinematic machine (PKM). The aim is to present a low-cost calibration alternative, for small and medium-sized enterprises, as well as educational and research teams, with no expensive measuring devices at their disposal.

Design/methodology/approach

Using a chessboard pattern on a ground-truth plane, a digital indicator, a two-dimensional eye-in-hand camera and a laser pointer, positioning errors are explored in the machine workspace. With the help of these measurements, interpolation functions are set up per direction, resulting in an interpolation vector function to compensate the volumetric errors in the workspace.

Findings

Based on the proof-of-concept system for the linear-delta PKM, it is shown that using the proposed measurement technique and modelless calibration method, positioning accuracy is significantly improved using simple setups.

Originality/value

In the proposed method, a combination of low-cost devices is applied to improve the three-dimensional positioning accuracy of a PKM. By using the presented tools, the parametric kinematic model is not required; furthermore, the calibration setup is simple, there is no need for hand–eye calibration and special fixturing in the machine workspace.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 December 2017

Dan Zhao, Yunbo Bi and Yinglin Ke

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose…

Abstract

Purpose

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality.

Design/methodology/approach

A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system.

Findings

A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors.

Practical implications

This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy.

Originality/value

This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.

Book part
Publication date: 3 June 2008

James C. Cox and Vjollca Sadiraj

Much of the literature on theories of decision making under risk has emphasized differences between theories. One enduring theme has been the attempt to develop a distinction…

Abstract

Much of the literature on theories of decision making under risk has emphasized differences between theories. One enduring theme has been the attempt to develop a distinction between “normative” and “descriptive” theories of choice. Bernoulli (1738) introduced log utility because expected value theory was alleged to have descriptively incorrect predictions for behavior in St. Petersburg games. Much later, Kahneman and Tversky (1979) introduced prospect theory because of the alleged descriptive failure of expected utility (EU) theory (von Neumann & Morgenstern, 1947).

Details

Risk Aversion in Experiments
Type: Book
ISBN: 978-1-84950-547-5

Article
Publication date: 13 May 2014

Mehdi Dehghani, Mahdi Ahmadi, Alireza Khayatian, Mohamad Eghtesad and Mehran Yazdi

The purpose of this paper is to present a vision-based method for the kinematic calibration of a six-degrees-of-freedom parallel robot named Hexa using only one Universal Serial…

Abstract

Purpose

The purpose of this paper is to present a vision-based method for the kinematic calibration of a six-degrees-of-freedom parallel robot named Hexa using only one Universal Serial Bus (USB) camera and a chess pattern installed on the robot's mobile platform. Such an approach avoids using any internal sensors or complex three-dimensional measurement systems to obtain the pose (position/orientation) of the robot's end-effector or the joint coordinates.

Design/methodology/approach

The setup of the proposed method is very simple; only one USB camera connected to a laptop computer is needed and no contact with the robot is necessary during the calibration procedure. For camera modeling, a pinhole model is used; it is then modified by considering some distortion coefficients. Intrinsic and extrinsic parameters and the distortion coefficients are found by an offline minimization algorithm. The chess pattern makes image corner detection very straightforward; this detection leads to finding the camera and then the kinematic parameters. To carry out the calibration procedure, several trajectories are run (the results of two of them are presented here) and sufficient specifications of the poses (positions/orientations) are calculated to find the kinematic parameters of the robot. Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy. After successful calibration and addition of an appropriate control scheme, the robot has been considered as a color-painting prototype robot to serve in relevant industries.

Findings

Experimental results obtained when applying the calibration procedure on a Hexa parallel robot show that vision-based kinematic calibration yields enhanced and efficient positioning accuracy.

Originality/value

The enhanced results show the advantages of this method in comparison with the previous calibration methods.

Details

Industrial Robot: An International Journal, vol. 41 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 13 May 2017

David S. Lee and Justin McCrary

Using administrative, longitudinal data on felony arrests in Florida, we exploit the discontinuous increase in the punitiveness of criminal sanctions at 18 to estimate the…

Abstract

Using administrative, longitudinal data on felony arrests in Florida, we exploit the discontinuous increase in the punitiveness of criminal sanctions at 18 to estimate the deterrence effect of incarceration. Our analysis suggests a 2% decline in the log-odds of offending at 18, with standard errors ruling out declines of 11% or more. We interpret these magnitudes using a stochastic dynamic extension of Becker’s (1968) model of criminal behavior. Calibrating the model to match key empirical moments, we conclude that deterrence elasticities with respect to sentence lengths are no more negative than 0 . 13 for young offenders.

Details

Regression Discontinuity Designs
Type: Book
ISBN: 978-1-78714-390-6

Keywords

Article
Publication date: 13 June 2016

Garrison Stevens, Sez Atamturktur, Ricardo Lebensohn and George Kaschner

Highly anisotropic zirconium is a material used in the cladding of nuclear fuel rods, ensuring containment of the radioactive material within. The complex material structure of…

Abstract

Purpose

Highly anisotropic zirconium is a material used in the cladding of nuclear fuel rods, ensuring containment of the radioactive material within. The complex material structure of anisotropic zirconium requires model developers to replicate not only the macro-scale stresses but also the meso-scale material behavior as the crystal structure evolves; leading to strongly coupled multi-scale plasticity models. Such strongly coupled models can be achieved through partitioned analysis techniques, which couple independently developed constituent models through an iterative exchange of inputs and outputs. Throughout this iterative process, biases, and uncertainties inherent within constituent model predictions are inevitably transferred between constituents either compensating for each other or accumulating during iterations. The paper aims to discuss these issues.

Design/methodology/approach

A finite element model at the macro-scale is coupled in an iterative manner with a meso-scale viscoplastic self-consistent model, where the former supplies the stress input and latter represents the changing material properties. The authors present a systematic framework for experiment-based validation taking advantage of both separate-effect experiments conducted within each constituent’s domain to calibrate the constituents in their respective scales and integral-effect experiments executed within the coupled domain to test the validity of the coupled system.

Findings

This framework developed is shown to improve predictive capability of a multi-scale plasticity model of highly anisotropic zirconium.

Originality/value

For multi-scale models to be implemented to support high-consequence decisions, such as the containment of radioactive material, this transfer of biases and uncertainties must be evaluated to ensure accuracy of the predictions of the coupled model. This framework takes advantage of the transparency of partitioned analysis to reduce the accumulation of errors and uncertainties.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Book part
Publication date: 15 April 2020

Ming Kong, Jiti Gao and Xueyan Zhao

This chapter re-examines the determinants of health care expenditure (HCE), using a panel of 32 Organization for Economic Cooperation and Development (OECD) countries from 1990 to…

Abstract

This chapter re-examines the determinants of health care expenditure (HCE), using a panel of 32 Organization for Economic Cooperation and Development (OECD) countries from 1990 to 2012. In particular, a panel semiparametric technique (i.e., a partially linear model) is employed, with cross-sectional dependence allowed. Beside the study of coefficients, this chapter investigates the trending functions of HCE. After the common and individual trends of HCE are estimated via semiparametric methods, the authors calibrate them with polynomial specifications, leading to out-of-sample forecasting. The validities of the calibration are tested as well. Contrary to those studies that do not take into account time series properties, our finding suggests that medical care is not a luxury commodity. Other determinants, such as public financing, and the supply of doctors, are all positively related to HCE. Moreover, the calibrated trending models perform well in out-of-sample forecasting.

Article
Publication date: 26 June 2019

Chrysanthos Maraveas, Thomas Gernay and Jean-Marc Franssen

The purpose of this paper is to present an improved temperature-dependent constitutive model for steel that accounts for local instabilities of slender plates using an effective…

Abstract

Purpose

The purpose of this paper is to present an improved temperature-dependent constitutive model for steel that accounts for local instabilities of slender plates using an effective stress-based method. This model can be easily implemented for use with Bernoulli beam finite elements (FEs) in the fire situation.

Design/methodology/approach

The constitutive model is derived by calibration on parametric numerical analysis on isolated plates subject to buckling at different elevated temperatures. The model is implemented in the FE software SAFIR and validation is performed against experimental and shell element analysis results.

Findings

A constitutive model based on an equivalent stress method is proposed as an efficient way to consider local buckling in steel members exposed to fire. The proposed stress–strain–temperature relationship is asymmetric and is modified in compression only, by reducing the proportional limit, the yield stress and the strain at yield stress. The reduction of these parameters depends on the plate’s boundary conditions, slenderness and temperature. The validation of the proposed model shows good agreement over a range of profile dimensions, temperatures and steel grades.

Research limitations/implications

The model is still giving conservative results for large compressive load eccentricities. An enhanced model is under development to improve the predictive capability under large eccentricities.

Practical implications

The proposed model, easily implemented into any finite element software, allows using fibre type (Bernoulli) beam FEs for modelling structures made of slender sections. This has major practical implications as beam elements are the workhorse used for simulating the behaviour of structures in fire. This model, thus makes it possible to simulate large structures with slender steel sections at a limited computational cost.

Originality/value

The paper presents a novel steel constitutive model based on an innovative approach to capture local buckling at the material level using an equivalent stress approach. The theoretical development, validation and perspectives for future improvements are presented.

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 29 July 2014

Xin Ye, Jun Gao, Zhijing Zhang, Chao Shao and Guangyuan Shao

The purpose of this paper is to propose a sub-pixel calibration method for a microassembly system with coaxial alignment function (MSCA) because traditional sub-pixel calibration

Abstract

Purpose

The purpose of this paper is to propose a sub-pixel calibration method for a microassembly system with coaxial alignment function (MSCA) because traditional sub-pixel calibration approaches cannot be used in this system.

Design/methodology/approach

The in-house microassembly system comprises a six degrees of freedom (6-DOF) large motion serial robot with microgrippers, a hexapod 6-DOF precision alignment worktable and a vision system whose optical axis of the microscope is parallel with the horizontal plane. A prism with special coating is fixed in front of the objective lens; thus, two parts’ Figures, namely the images of target and base part, can be acquired simultaneously. The relative discrepancy between the two parts can be calculated from image plane coordinate instead of calculating space transformation matrix. Therefore, the traditional calibration method cannot be applied in this microassembly system. An improved calibration method including the check corner detection solves the distortion coefficient conversely. This new way can detect the corner at sub-pixel accuracy. The experiment proves that the assembly accuracy of the coaxial microassembly system which has been calibrated by the new method can reach micrometer level.

Findings

The calibration results indicate that solving the distortion conversely could improve the assembly accuracy of MSCA.

Originality/value

The paper provides certain calibration methodological guidelines for devices with 2 dimensions or 2.5 dimensions, such as microelectromechanical systems devices, using MSCA.

Details

Assembly Automation, vol. 34 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 31 May 2022

Efe C. Balta and Atakan Altınkaynak

This paper aims to develop experimentally validated numerical models to accurately characterize the cross-sectional geometry of the deposited beads in a fused filament fabrication…

Abstract

Purpose

This paper aims to develop experimentally validated numerical models to accurately characterize the cross-sectional geometry of the deposited beads in a fused filament fabrication (FFF) process under various process conditions.

Design/methodology/approach

The presented numerical model is investigated under various fidelity with varying computational complexity. To this end, comparisons between the Newtonian, non-newtonian, isothermal and non-isothermal computational models are presented for the extrusion of polylactic acid material in an FFF process. The computational model is validated through an experimental study on an off-the-shelf FFF printer. Microscope images of experimentally printed FFF bead cross-sections corresponding to various printing conditions are digitally processed for the validation. In the experimental study, common practical printing conditions for an FFF process are tested, and the results are compared to the numerical model.

Findings

Microscope image analyses of the cross-sectional geometries of deposited beads show that the numerical model provides a precise characterization of the cross-sectional geometry under varying process parameters in terms of the cross-section outline, bead height and width. The results show that the nozzle-to-table distance has a great effect on the bead shape when compared to the extrusion rate at a given nozzle-to-table distance. Comparison of the various computational models show that the non-Newtonian isothermal model provides the best tradeoff between computational complexity and model accuracy.

Originality/value

The authors provide detailed computational models, including the extruder nozzle geometry for cases ranging from Newtonian isothermal models to non-Newtonian non-isothermal models with experimental validation. The validation study is conducted for practical process parameters that are commonly used in FFF in practice and show that the computational models provide an accurate depiction of the true process outputs. As the developed models can accurately predict process outputs, they can be used in further applications for process planning and parameter tuning.

1 – 10 of 753