Search results

1 – 10 of over 6000
Article
Publication date: 28 July 2022

Priyanka Sakare, Saroj Kumar Giri, Debabandya Mohapatra and Manoj Kr Tripathi

This paper aims to study the color change kinetics of lac dye in response to pH and food spoilage metabolites (ammonia, lactic acid and tyramine) for its potential application in…

Abstract

Purpose

This paper aims to study the color change kinetics of lac dye in response to pH and food spoilage metabolites (ammonia, lactic acid and tyramine) for its potential application in intelligent food packaging.

Design/methodology/approach

UV-Vis spectroscopy was used to study the color change of dye solution. Ratio of absorbance of dye solution at 528 nm (peak of ionized form) to absorbance at 488 nm (peak of unionized form) was used to study the color change. Color change kinetics was studied in terms of change in absorbance ratio (A528/A488) with time using zero- and first-order reaction kinetics. An indicator was prepared by incorporating lac dye in agarose membrane to validate the result of study for monitoring quality of raw milk.

Findings

Dye was orange-red in acidic medium (pH: 2 to 5) and exhibited absorbance peak at 488 nm. It turned purple in alkaline medium (pH: 7 to10) and exhibited absorbance peak at 528 nm. The change in absorbance ratio with pH followed zero-order model. Acid dissociation constant (pKa) of dye was found to be 6.3. Color change of dye in response to ammonia and tyramine followed zero-order reaction kinetics, whereas for lactic acid, the first-order model was found best. In the validation part, the color of the indicator label changed from purple to orange-red when the milk gets spoiled.

Originality/value

The study opens a new application area for lac dye. The results suggest that lac dye has potential to be used as an indicator in intelligent food packaging for detection of spoilage in seafood, meat, poultry and milk.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 August 2011

Lien Van der Schueren and Karen De Clerck

The purpose of this paper is to develop textile materials with a pH‐sensitive function.

Abstract

Purpose

The purpose of this paper is to develop textile materials with a pH‐sensitive function.

Design/methodology/approach

As a start point, the feasibility of incorporating pHindicators in conventional textiles using standard dyeing processes was investigated. Next, a pHindicator was incorporated into a nylon nanofibrous structure by adding the dye to the polymer solution before the start of the electro‐spinning process.

Findings

The authors' results proved that it is possible to develop a pH‐sensor using conventional textiles dyed by a standard dyeing process. Also, the incorporation of a pHindicator dye into a nanofibrous structure was possible. Moreover, reproducible samples could be obtained. Furthermore, the majority of the obtained textile structures showed a clear colour change with a change in acidity. This halochromic behaviour was, however, different from the behaviour of the dyes in solution due to dye‐fibre interactions.

Originality/value

The knowledge obtained in this study can lead to the development of a textile pH‐sensor. This sensor can be used in a broad field of applications since a colour change is a non‐disturbing but clear signal which can perform a first warning function.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 February 2021

Manickam Ramesh Kumar, Ramalingam Malathy, Sundararajan Paramasivam, Ill-Min Chung, Seung-Hyun Kim and Prabakaran Mayakrishnan

The textile industry is one of the largest and most important industrial sectors in India. Because the textile industry consumes large quantities of water and produces highly…

Abstract

Purpose

The textile industry is one of the largest and most important industrial sectors in India. Because the textile industry consumes large quantities of water and produces highly polluted water discharge, its environmental impact is high. Water is expensive to use, treat and dispose of. Therefore, water conservation and reuse are critical necessity for the textile industry because decreasing water and wastewater treatment and recycling costs can be beneficial.

Design/methodology/approach

This research neutralized the pH during dyeing industry wastewater treatment. The system should be robust to erroneous sensor measurements. A pH meter was developed and used to monitor the pH of wastewater hourly before and after HCl treatment.

Findings

HCl was used to neutralize the pH of wastewater from 9 to 7.5. The amount of HCl was optimized depending on the wastewater. Three wastewater treatment methods were used, namely, HCl, wash water and reverse osmosis (RO) treatments. The HCl treatment was the most effective for decreasing the pH; the wash water treatment was the most effective for decreasing the total dissolved solids (TDS), total suspended solids (TSS) total hardness and chemical oxygen demand; and the RO treatment was the most effective for decreasing the biochemical oxygen demand, TDS, TSS, total hardness and Cl concentration.

Originality/value

The pH should be monitored during the textile dyeing because the addition of color to textile fabrics is the most effective at neutral pH. This study evaluated several parameters of wastewater, including pH, color, TSS and TDS. The fabricated digital pH meter provided superior results than conventional measuring devices. The goal was to maintain a neutral pH during dyeing and recycle wastewater to improve environmental sustainability. The newly developed digital pH meter was less expensive and more precise than traditional pH meters. Before reusing and recycling, wastewater underwent ultrafiltration and RO treatment.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 April 2023

Priyanka Sakare and Saroj Kumar Giri

The purpose of this paper was to study the color change kinetics of lac dye in response to aldehydes, carbon dioxide and other food spoilage metabolites for its potential…

Abstract

Purpose

The purpose of this paper was to study the color change kinetics of lac dye in response to aldehydes, carbon dioxide and other food spoilage metabolites for its potential application in intelligent food packaging.

Design/methodology/approach

UV–Vis spectroscopy was used to study the color change of dye solution. Ratio of absorbance of dye solution at 528 nm (peak of ionized form) to absorbance at 488 nm (peak of unionized form) was used to study the color change. Color change kinetics was studied in terms of change in absorbance ratio (A528/A488) with time using zero and first-order reaction kinetics. Lac dye-based indicator was prepared to validate the result of study for monitoring quality of strawberries.

Findings

Lac dye was orange-red in acidic medium and purple in alkaline medium. Color change of dye in response to benzaldehyde followed zero-order reaction kinetics, whereas for carbon dioxide first-order model was found best. No color change of dye solution was observed for alcohols, ketones and sulfur compounds. In the validation part, the color of the indicator label changed from purple to orange when the strawberries spoiled.

Originality/value

The study expands application area for lac dye as sensing reagent in intelligent food packaging for spoilage or ripeness detection of fruits and vegetables.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 April 1976

Michael Spencer

Scurvy was at one time one of the most wide‐spread diseases, especially among seamen on long voyages. Little was known about the causes or treatment of the disease, but in 1753…

Abstract

Scurvy was at one time one of the most wide‐spread diseases, especially among seamen on long voyages. Little was known about the causes or treatment of the disease, but in 1753 James Lind showed that it could be prevented and cured by eating fresh fruits and vegetables. Captain Cook in his voyages made full use of this discovery to keep his crew in good health. In 1842, Budd suggested that scurvy was the result of ‘abstinence from vegetables and fruits’, but it was not until 1907 that this was demonstrated in practice, when Hoist and Frölich produced experimental scurvy in guinea pigs by using a restricted diet. In 1932 the active factor, ascorbic acid, was isolated in a pure form from lemons by Zilva and found to be identical with a compound obtained by Szent‐Györgyi from cabbages and adrenal glands in 1928. Finally, Haworth and Hirst identified the structure of ascorbic acid or vitamin C, which was synthesised in the same year by Reichstein and others.

Details

Nutrition & Food Science, vol. 76 no. 4
Type: Research Article
ISSN: 0034-6659

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 February 2024

Lu Luo, Kang Qi and Hualiang Huang

The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag…

Abstract

Purpose

The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag under an NaCl thin electrolyte layer (TEL).

Design/methodology/approach

A self-made experimental setup for the ECM behavior between Cu and Ag was designed. An HD video measurement microscopy was used to observe the typical dendrite/corrosion morphology and pH distribution. Short-circuit time (SCT), short-circuit current density and the influence of the galvanic effect between Cu and Ag on their ECM behavior were studied by electrochemical tests. The surface morphology and composition of dendrite were characterized by FESEM/EDS.

Findings

The SCT increased with increasing NaCl concentration but decreased with increasing applied bias voltage, and the SCT between Cu and Ag was less than that between Cu and Cu because their galvanic effect accelerated the dissolution and migration of Cu. When NaCl concentration was less than or equal to 6 mmol/L, cedar-like dendrite was formed, whereas no dendrite formed and only precipitation occurred at high chloride ion concentration (100 mmol/L). The composition of the dendrite between Cu and Ag was copper.

Research limitations/implications

The significance of this study is to clarify the ECM failure mechanism of printed circuit board (PCB) with an immersion silver surface finish (PCB-ImAg).

Practical implications

This study provides a basic theoretical basis for the selection of protective measures and metal coatings for PCB.

Social implications

The social implication of this study is to predict the service life of PCB.

Originality/value

The ECM behavior of dissimilar metals under a TEL was investigated, the influence of the galvanic effect between them on their ECM was discussed, and the SCT increased with increasing NaCl concentration.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 March 2015

Carlos Alberto Schuch Bork, Janaina Fracaro Souza Gonçalves and Jefferson Oliveira Gomes

This article aims to collect data on the aluminum alloy 7050-T7451 machinability used in the manufacturing of aeronautical structures, using the combination of the jatropha…

Abstract

Purpose

This article aims to collect data on the aluminum alloy 7050-T7451 machinability used in the manufacturing of aeronautical structures, using the combination of the jatropha vegetable-base soluble cutting oil in relation to the canola vegetal and semisynthetic mineral oils and the technique to apply cutting fluid by flood in relation to the Minimum Quantity Lubrication (MQL) in the milling process (HSM – high-speed machining).

Design/methodology/approach

It was observed that the jatropha vegetal cutting oil presented the best results in relation to requirements for lubrication, superficial mean roughness (index Ra) and shape errors in relation to the other oils in both the techniques to apply fluid which were tested. Comparing the application techniques, the jatropha vegetal oil offered an increase in the life span of the cutting tool, using the flood technique, exceeding in almost six times the machined length of the cutting tool in relation to the MQL technique in the same process conditions.

Findings

The Jatropha vegetable-base cutting oil, besides being produced from a renewable source, has inherent characteristics that can help attain a sustainable manufacturing, mainly with the use of the flood technique to apply cutting fluid in the aluminum alloy 7050-T7451 machining.

Originality/value

The Jatropha (vegetable) oil, in relation to its physicochemical properties, appeared to be the best one fit for being used in the machining of aluminum alloys 7050-T7451 because it did not interfere with any of the elements involved in the formation of intergranular corrosion and/or pitting, which are not allowed in the aeronautical production of parts. Jatropha (vegetable) cutting oil, besides being produced from a clean and renewable source, has the inherent characteristics that can help attain a sustainable manufacturing.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2023

Hafsat T. Rumah, Mansur B. Ibrahim and Sani M. Gumel

The purpose of this research is to identify and investigate some natural dyes with halochromic properties for potential use as food spoilage indicators to reduce waste and curve…

Abstract

Purpose

The purpose of this research is to identify and investigate some natural dyes with halochromic properties for potential use as food spoilage indicators to reduce waste and curve the negative effects of food borne diseases.

Design/methodology/approach

Exactly 10 potential dye-yielding plants were selected based on their colour (mostly purple, red, maroon and pink). Solvent extraction was used to extract the dyes and pH differential method was used to determine the concentrations of anthocyanin in the extracted dyes. Different concentrations of hydrochloric acid and sodium hydroxide (0.1 M, 1 M and 2 M) in drops and in excess as acidic and basic solution, respectively, were used to test the halochromicity of the extracted dyes. Methyl red (a synthetic dye) was used as a reference standard/control. The pH of the dyes was recorded before and after addition of both NaOH and HCl solutions.

Findings

Five out of the 10 dyes extracted (labelled as dye A–E for Ti plant (green Cordyline fruticosa), coleus (Coleus blumei), paper flower (Bougainvillea glabra), painted nettle (Palisandra coleus) and purple heart (Setcresea purpurea), respectively, were found to be halochromic (even at low doses) by changing its colour when exposed to both acidic and basic solutions. While other dyes labelled F–J for red acalypha (Acalypha wilkesiana), golden shower (Cassia fistula), golden dew drop (Duranta repens), wild sage (Lantana camara var Aculeata) and pink oleander (Apocynaceae Nerium oleander), respectively, were either completely insensitive to the solutions in drops, slightly sensitive at high doses or the colour change is insignificant. Although some dyes were found to be more sensitive than others but in most cases, the colour changes in halochromic dyes were more stable in acidic conditions than in basic making it more sensitive to the basic than the acidic solution with the exception of dye A and E (to some extent) which was sensitive to both acidic and basic solution. The anthocyanin contents of dye A–J were found to be between the range of 2.28–10.35 mg/l with dye E having the lowest and dye J with the highest anthocyanin concentration, respectively. The initial pH of all the dyes falls within the range of 4.8–7.3 with most found within the acidic range.

Originality/value

Halochromic dye research studies are still at the infancy stage in developing world despite the vast available and abundant potential natural halochromic dye-yielding plants. The study explored this area of research and gives an opportunity for the development of smart packaging for pH-sensitive foods using natural dyes as an alternative to conventional synthetic dyes to reduce cost and also curve the negative effect of synthetic dyes as well as food borne diseases.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 September 2023

Siddhesh Umesh Mestry, Vardhan B. Satalkar and S.T. Mhaske

This study aims to describe the design and synthesis of two novel azo and imine chromophores-based dyes derived from two different aldehydes with intramolecular colour matching…

Abstract

Purpose

This study aims to describe the design and synthesis of two novel azo and imine chromophores-based dyes derived from two different aldehydes with intramolecular colour matching that are pH sensitive.

Design/methodology/approach

The visible absorption wavelength (λmax) was extended when azo chromophore was included in imine-based systems. The dyed patterns created sophisticated colour-changing paper packaging sensors with pH-sensitive chromophores using alum as a mediator or mordant. Due to the tight adhesive bonding, the dyes on paper’s cellulose fibres could not be removed by ordinary water even at extremely high or low pH, which was confirmed by scanning electron microscopy analysis. The dyed patterns demonstrated an evident, sensitive and fast colour-changing mechanism with varying pH, from pale yellow to red for Dye-I and from pale yellow to brown-violet for Dye-II.

Findings

The λmax for colour changing was recorded from 400 to 490 nm for Dye-I, whereas from 400 to 520 for Dye-II. The freshness judgement of food was checked using actual experiments with cooked crab spoilage, where the cooked crab was incubated at 37 oC for 6 h to see the noticeable colour change from yellow to brown-violet with Dye-II. The colour-changing mechanism was studied with Fourier transform infrared (FTIR) spectra at different pH, and thin layer chromatography, nuclear magnetic resonance and FTIR spectroscopy studied the desired structure formation of the dyes. Potential uses for smart packaging sensors include quickly detecting food freshness during transportation or right before consumption.

Originality/value

1. Two novel azo-imine dyes have been synthesized with a pH-responsive effect. 2. The pH-responsive mechanism was studied. 3. The study was supported by computational chemistry using density functional theory. 4. The obtained dyes were used to make pH-responsive sensors for seafood packaging to judge the freshness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 6000