Search results

1 – 10 of 513
Article
Publication date: 1 February 2005

R.A. Abu Zitar

The problem of estimating the minimum forces extracted by robot fingers on the surface of a grasped rigid object is very crucial to guarantee the stability of the grip without…

Abstract

Purpose

The problem of estimating the minimum forces extracted by robot fingers on the surface of a grasped rigid object is very crucial to guarantee the stability of the grip without causing defect or damage to the grasped object. Solving this problem is investigated in this paper. Moreover, the optimum sets of parameters used to tune the algorithm are also studied here.

Design/methodology/approach

Ant Colony Optimization (ACO), which is a swarm intelligence‐based method, is used in this work to solve this problem. The problem under scope is a complex, constraint optimization problem. We develop our own approach to calculate those minimum forces. Ants ability to reorganize and behave collectively is modelled here. The required forces are a result of the final ants distribution around the fingers contact points. Ants move from contact point to another following the maximum pheromone level direction until they settle on a solution that accomplishes the given criteria. Ants number on a contact point constitutes the total force exerted by a finger on that contact point. The process is repeated until optimum solution is found. Simulations are repeated to track down most suitable ACO parameters for this type of problems and with different fingers configurations.

Findings

The results show that ACO can find optimum fingers forces for grasping rigid objects. These objects could be any polygon with or without friction between the fingers tips and the object surface. The method is computationally acceptable and can be applied with different fingers configurations and with different friction coefficients. We found that the optimal set of parameters used to tune ACO is independent of the initial number of ants on each location.

Originality/value

In this paper we present a very original, new, and interesting technique used to solve the optimum grasping forces of rigid objects. It is a well‐known fact that standard optimization techniques have their own requirements and limitations. This technique is based on swarm intelligence. This work opens the door for further investigations on how nature based methods can be used to solve complex problems. ACO offers a simple, yet structure approach to solve nonlinear constraint optimization problems.

Details

Industrial Robot: An International Journal, vol. 32 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 1985

S. Alliney, A. Strozzi and A. Tralli

A finite element model for the elastohydrodynamic lubrication problem is presented. A coupling between the hydrodynamic equation and the foundation compliance equation is…

Abstract

A finite element model for the elastohydrodynamic lubrication problem is presented. A coupling between the hydrodynamic equation and the foundation compliance equation is performed, then the resulting functional problem is given an ‘extended’ variational formulation. Some preliminary numerical results are also presented.

Details

Engineering Computations, vol. 2 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 1987

Antonio Strozzi

A class of exact solutions to the elastohydrodynamic problem to be used as test cases is presented. A numerical solution to the elastohydrodynamic problem according to the…

Abstract

A class of exact solutions to the elastohydrodynamic problem to be used as test cases is presented. A numerical solution to the elastohydrodynamic problem according to the Petrov—Galerkin method is developed. The appearance of spurious numerical undulations in the film profile is examined. A comparison between analytical and numerical results is employed to determine which numerical schemes limit the outcome of numerical oscillations without compromising the solution accuracy.

Details

Engineering Computations, vol. 4 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 7 August 2017

Daniel Mejia, Diego A. Acosta and Oscar Ruiz-Salguero

Mesh Parameterization is central to reverse engineering, tool path planning, etc. This work synthesizes parameterizations with un-constrained borders, overall minimum angle plus…

Abstract

Purpose

Mesh Parameterization is central to reverse engineering, tool path planning, etc. This work synthesizes parameterizations with un-constrained borders, overall minimum angle plus area distortion. This study aims to present an assessment of the sensitivity of the minimized distortion with respect to weighed area and angle distortions.

Design/methodology/approach

A Mesh Parameterization which does not constrain borders is implemented by performing: isometry maps for each triangle to the plane Z = 0; an affine transform within the plane Z = 0 to glue the triangles back together; and a Levenberg–Marquardt minimization algorithm of a nonlinear F penalty function that modifies the parameters of the first two transformations to discourage triangle flips, angle or area distortions. F is a convex weighed combination of area distortion (weight: α with 0 ≤ α ≤ 1) and angle distortion (weight: 1 − α).

Findings

The present study parameterization algorithm has linear complexity [𝒪(n), n = number of mesh vertices]. The sensitivity analysis permits a fine-tuning of the weight parameter which achieves overall bijective parameterizations in the studied cases. No theoretical guarantee is given in this manuscript for the bijectivity. This algorithm has equal or superior performance compared with the ABF, LSCM and ARAP algorithms for the Ball, Cow and Gargoyle data sets. Additional correct results of this algorithm alone are presented for the Foot, Fandisk and Sliced-Glove data sets.

Originality/value

The devised free boundary nonlinear Mesh Parameterization method does not require a valid initial parameterization and produces locally bijective parameterizations in all of our tests. A formal sensitivity analysis shows that the resulting parameterization is more stable, i.e. the UV mapping changes very little when the algorithm tries to preserve angles than when it tries to preserve areas. The algorithm presented in this study belongs to the class that parameterizes meshes with holes. This study presents the results of a complexity analysis comparing the present study algorithm with 12 competing ones.

Details

Engineering Computations, vol. 34 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Hongru Xu and Erbao Cao

The purpose of this paper is to develop a closed-loop supply chain (CLSC) network equilibrium model which consists of manufactures, retailers and consumer markets engaged in a…

Abstract

Purpose

The purpose of this paper is to develop a closed-loop supply chain (CLSC) network equilibrium model which consists of manufactures, retailers and consumer markets engaged in a Cournot pricing game with heterogeneous multi-product.

Design/methodology/approach

The authors model the optimal behavior of the various decision makers and CLSC network equilibrium, and derive the equilibrium conditions based on variational inequality approach. The authors present a new Newton method to solve the proposed model.

Findings

The authors find that the algorithm converges to the solution rapidly for most cases. Besides, the authors discuss the effect of some parameters on the equilibrium solution of the model, and give some insights for policy makers, such as improving the technology level of the manufacturer, reducing the cost of waste disposal and increase the minimum ration of used product to total quantity.

Originality/value

The authors derive the network equilibrium conditions by the variational inequality formulation in order to obtain the computation of the equilibrium flows and prices. The authors present a new Newton method to solve the proposed model. The authors discuss the effect of some parameters on the equilibrium solution of the model, and give some managerial insights

Details

Kybernetes, vol. 45 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 November 2021

Lilia Alanís-López, Martha-Selene Casas-Ramírez and José-Fernando Camacho-Vallejo

The aim of the study is to show that merging two areas of mathematics – topology and discrete optimization – could result in a viable option to solve classical or specialized…

Abstract

Purpose

The aim of the study is to show that merging two areas of mathematics – topology and discrete optimization – could result in a viable option to solve classical or specialized integer problems.

Design/methodology/approach

In the paper, discrete topology concepts are applied to propose a metaheuristic algorithm that is capable to solve binary programming problems. Particularly, some of the homotopy for paths principles are used to explore the solution space associated with four well-known NP-hard problems herein considered as follows: knapsack, set covering, bi-level single plant location with order and one-max.

Findings

Computational experimentation confirms that the proposed algorithm performs in an effective manner, and it is able to efficiently solve the sets of instances used for the benchmark. Moreover, the performance of the proposed algorithm is compared with a standard genetic algorithm (GA), a scatter search (SS) method and a memetic algorithm (MA). Acceptable results are obtained for all four implemented metaheuristics, but the path homotopy algorithm stands out.

Originality/value

A novel metaheuristic is proposed for the first time. It uses topology concepts to design an algorithmic framework to solve binary programming problems in an effective and efficient manner.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2005

A. Miller, P. Allen, V. Santos and F. Valero‐Cuevas

Robotic hands are still a long way from matching the grasping and manipulation capability of their human counterparts, but computer simulation may help us understand this…

2652

Abstract

Purpose

Robotic hands are still a long way from matching the grasping and manipulation capability of their human counterparts, but computer simulation may help us understand this disparity. We present our publicly available simulator, and describe our research projects involving the system including the development of a human hand model derived from experimental measurements.

Design/methodology/approach

Unlike other simulation systems, our system was built specifically to analyze grasps. It can import a wide variety of robot designs by using standard descriptions of the kinematics and link geometries. Various components support the analysis of grasps, visualization of results, dynamic simulation of grasping tasks, and grasp planning.

Findings

The simulator has been used in several grasping research problems and can be used to plan grasps for an actual robot. With the aid of a vision system, we have shown that these grasps can be executed by a robot.

Research limitations/implications

We are currently developing methods to handle deformable surfaces, tendon driven models, and non‐ideal joints in order to better model human grasping.

Practical implications

This work is part of our current project to create a biomechanically realistic human hand model to better understand what features are most important to mimic in the designs of robotic hands. Such a model will also help clinicians better plan reconstructive hand surgeries.

Originality/value

We describe our publicly available grasping simulator and review experiments performed with it. The paper demonstrates the usefulness of this system as a tool for grasping research.

Details

Industrial Robot: An International Journal, vol. 32 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 May 2023

Yujie Zhang, Jing Cui, Yang Li and Zhongyi Chu

This paper aims to address the issue of model discontinuity typically encountered in traditional Denavit-Hartenberg (DH) models. To achieve this, we propose the use of a local…

Abstract

Purpose

This paper aims to address the issue of model discontinuity typically encountered in traditional Denavit-Hartenberg (DH) models. To achieve this, we propose the use of a local Product of Exponentials (POE) approach. Additionally, a modified calibration model is presented which takes into account both kinematic errors and high-order joint-dependent kinematic errors. Both kinematic errors and high-order joint-dependent kinematic errors are analyzed to modify the model.

Design/methodology/approach

Robot positioning accuracy is critically important in high-speed and heavy-load manufacturing applications. One essential problem encountered in calibration of series robot is that the traditional methods only consider fitting kinematic errors, while ignoring joint-dependent kinematic errors.

Findings

Laguerre polynomials are chosen to fitting kinematic errors and high-order joint-dependent kinematic errors which can avoid the Runge phenomenon of curve fitting to a great extent. Levenberg–Marquard algorithm, which is insensitive to overparameterization and can effectively deal with redundant parameters, is used to quickly calibrate the modified model. Experiments on an EFFORT ER50 robot are implemented to validate the efficiency of the proposed method; compared with the Chebyshev polynomial calibration methods, the positioning accuracy is improved from 0.2301 to 0.2224 mm.

Originality/value

The results demonstrate the substantial improvement in the absolute positioning accuracy achieved by the proposed calibration methods on an industrial serial robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 January 2023

Jia Jia Chang, Zhi Jun Hu and Changxiu Liu

In this study, a dynamic contracting model is developed between a venture capitalist (VC) and an entrepreneur (EN) to explore the influence of asymmetric beliefs regarding…

Abstract

Purpose

In this study, a dynamic contracting model is developed between a venture capitalist (VC) and an entrepreneur (EN) to explore the influence of asymmetric beliefs regarding output-relevant parameters, agency conflicts and complementarity on the VC's posterior beliefs through the EN's unobservable effort choices to influence the optimal dynamic contract.

Design/methodology/approach

The authors construct the contracting model by incorporating the VC's effort, which is ignored in most studies. Using backward induction and a discrete-time approximation approach, the authors solve the continuous-time contract design problem, which evolves into a nonlinear ordinary differential equation (ODE).

Findings

The optimal equity share that the VC provides to the EN decreases over time. In accordance with the empirical evidence, the EN's optimistic beliefs regarding the project's profitability positively affect its equity share. However, the interactions between the optimal equity share, project risk and both partners' degrees of risk aversion are not monotonic. Moreover, the authors find that the optimal equity share increases with the degree of complementarity, which indicates that the EN is willing to cooperate with the VC. This study’s results also show that the optimal equity shares at each time are interdependent if the VC is risk-averse and independent if the VC is risk-neutral.

Research limitations/implications

In conclusion, the authors highlight two potential directions for future research. First, the authors only considered a single VC, whereas in practice, a risk project may be carried out by multiple VCs, and it is interesting to discuss how the degree of complementarity affects the number of VCs that ENs contract. Second, the authors may introduce jumps and consider more general multivariate stochastic volatility models for output dynamics and analyze the characteristics of the optimal contracts. Third, further research can deal with other forms of discretionary output functions concerning complementarity, such as Cobb–Douglas and constant elasticity of substitution (See Varian, 1992).

Social implications

The results of this study have several implications. First, it offers a novel approach to designing dynamic contracts that are specific and easy to operate. To improve the complicated venture investment situation and abate conflict between contractual parties, this study plays a good reference role. Second, the synergy effect proposed in this study provides a theoretical explanation for the executive compensation puzzle in economics, in which managers are often “rewarded for luck” (Bertrand and Mullainathan, 2001; Wu et al., 2018). This result indicates a realistic perspective on financing and establishing cooperative relationships, which enhances the efficiency of venture investment. Third, from an empirical standpoint, one can apply this framework to study research and development (R&D) problems.

Originality/value

First, the authors introduce asymmetric beliefs and Bayesian learning to study the dynamic contract design problem and discuss their effects on equity share. Second, the authors incorporate the VC's effort into the contracting problem, and analyze the synergistic effect of effort complementarity on the optimal dynamic contract.

Details

Kybernetes, vol. 53 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 April 2008

S. Ebrahimi and P. Eberhard

This paper extends the linear complementarity problem formulation of [7] and [8] for normal impact of planar deformable bodies in multibody systems. In the kinematics of impact we…

Abstract

This paper extends the linear complementarity problem formulation of [7] and [8] for normal impact of planar deformable bodies in multibody systems. In the kinematics of impact we consider the normal gaps between the impacting bodies in terms of the generalized coordinates. Then, the generalized coordinate’s vector is formulated in terms of the impact forces using the 5th order implicit Runge‐Kutta approach RADAU5. Substituting the generalized coordinates in the relation of normal gaps together with the complementarity relations of unilateral contact constraints leads to a linear complementarity problem where its solution results in the solution of the impact problem including impact forces and normal gaps. Then, alternatively another formulation on velocity level based on the 4th order explicit Runge‐Kutta is presented. In the presented approach no coefficient of restitution is used for treatment of energy loss during impact and, instead, the material damping is responsible for energy loss. A good agreement between the results of our approach with the results of FEM for soft planar deformable bodies was shown in [7]. Here, we improve the results for stiff planar deformable bodies and show that with a proper selection of eigenmodes, the results on both position and velocity level approach the precise results of FEM provided that an optimal time step of the integration is chosen. We also investigate the effect of considering material damping and some higher eigenfrequencies on the amount of energy which is dissipated during impact based on our approach.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 513