Search results

1 – 10 of over 56000
Open Access
Article
Publication date: 26 May 2023

Mpho Trinity Manenzhe, Arnesh Telukdarie and Megashnee Munsamy

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

1705

Abstract

Purpose

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

Design/methodology/approach

The extant literature in physical assets maintenance depicts that poor maintenance management is predominantly because of a lack of a clearly defined maintenance work management process model, resulting in poor management of maintenance work. This paper solves this complex phenomenon using a combination of conceptual process modeling and system dynamics simulation incorporating 4IR technologies. A process for maintenance work management and its control actions on scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.

Findings

A process for maintenance work management is thus modeled and simulated as a dynamic system. Post-model validation, this study reveals that the real-world maintenance work management process can be replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work management systems reveals that the implementation of 4IR technologies intensifies asset performance with an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of 4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive maintenance strategy.

Research limitations/implications

The study focused on maintenance work management system without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply chain management.

Practical implications

The maintenance real-world quantitative data is retrieved from two maintenance departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance quantitative data retrieved represent six various types of equipment used at underground Mines. The maintenance management qualitative data (Organizational documents) in maintenance management are retrieved from company A and company B. Company A is a global mining industry, and company B is a global manufacturing industry. The reliability of the data used in the model validation have practical implications on how maintenance work management system behaves with the benefit of 4IR technologies' implementation.

Social implications

This research study yields an overall benefit in asset management, thereby intensifying asset performance. The expected learnings are intended to benefit future research in the physical asset management field of study and most important to the industry practitioners in physical asset management.

Originality/value

This paper provides for a model in which maintenance work and its dynamics is systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall maintenance work management. The use of a system dynamic model and simulation incorporating 4IR technologies adds value on the maintenance work management effectiveness.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 March 2002

Fu‐Ren Lin, Meng‐Chyn Yang and Yu‐Hua Pai

Among different BPR strategies and methodologies, one common feature is to capture existing processes and represent new processes adequately. Business process modeling plays a…

9453

Abstract

Among different BPR strategies and methodologies, one common feature is to capture existing processes and represent new processes adequately. Business process modeling plays a crucial role on such effort. This paper proposes a generic structure for modeling business processes in order to capture essential concepts of business process and represent them structurally. The generic structure possesses two main features suitable for business process modeling: one is that it can represent a business process in various concerns and multiple layers of abstraction, and the other is that it lowers the barriers between process representation and model analysis by embedding verification and validation with the model. The generic modeling method is illustrated by an order fulfillment process in supply chain networks.

Details

Business Process Management Journal, vol. 8 no. 1
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 7 June 2021

Carol K.H. Hon, Chenjunyan Sun, Bo Xia, Nerina L. Jimmieson, Kïrsten A. Way and Paul Pao-Yen Wu

Bayesian approaches have been widely applied in construction management (CM) research due to their capacity to deal with uncertain and complicated problems. However, to date…

Abstract

Purpose

Bayesian approaches have been widely applied in construction management (CM) research due to their capacity to deal with uncertain and complicated problems. However, to date, there has been no systematic review of applications of Bayesian approaches in existing CM studies. This paper systematically reviews applications of Bayesian approaches in CM research and provides insights into potential benefits of this technique for driving innovation and productivity in the construction industry.

Design/methodology/approach

A total of 148 articles were retrieved for systematic review through two literature selection rounds.

Findings

Bayesian approaches have been widely applied to safety management and risk management. The Bayesian network (BN) was the most frequently employed Bayesian method. Elicitation from expert knowledge and case studies were the primary methods for BN development and validation, respectively. Prediction was the most popular type of reasoning with BNs. Research limitations in existing studies mainly related to not fully realizing the potential of Bayesian approaches in CM functional areas, over-reliance on expert knowledge for BN model development and lacking guides on BN model validation, together with pertinent recommendations for future research.

Originality/value

This systematic review contributes to providing a comprehensive understanding of the application of Bayesian approaches in CM research and highlights implications for future research and practice.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 26 October 2017

Okan Duru and Matthew Butler

In the last few decades, there has been growing interest in forecasting with computer intelligence, and both fuzzy time series (FTS) and artificial neural networks (ANNs) have…

Abstract

In the last few decades, there has been growing interest in forecasting with computer intelligence, and both fuzzy time series (FTS) and artificial neural networks (ANNs) have gained particular popularity, among others. Rather than the conventional methods (e.g., econometrics), FTS and ANN are usually thought to be immune to fundamental concepts such as stationarity, theoretical causality, post-sample control, among others. On the other hand, a number of studies significantly indicated that these fundamental controls are required in terms of the theory of forecasting, and even application of such essential procedures substantially improves the forecasting accuracy. The aim of this paper is to fill the existing gap on modeling and forecasting in the FTS and ANN methods and figure out the fundamental concepts in a comprehensive work through merits and common failures in the literature. In addition to these merits, this paper may also be a guideline for eliminating unethical empirical settings in the forecasting studies.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-78743-069-3

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 7 May 2019

Yanan Wang, Jianqiang Li, Sun Hongbo, Yuan Li, Faheem Akhtar and Azhar Imran

Simulation is a well-known technique for using computers to imitate or simulate the operations of various kinds of real-world facilities or processes. The facility or process of…

1579

Abstract

Purpose

Simulation is a well-known technique for using computers to imitate or simulate the operations of various kinds of real-world facilities or processes. The facility or process of interest is usually called a system, and to study it scientifically, we often have to make a set of assumptions about how it works. These assumptions, which usually take the form of mathematical or logical relationships, constitute a model that is used to gain some understanding of how the corresponding system behaves, and the quality of these understandings essentially depends on the credibility of given assumptions or models, known as VV&A (verification, validation and accreditation). The main purpose of this paper is to present an in-depth theoretical review and analysis for the application of VV&A in large-scale simulations.

Design/methodology/approach

After summarizing the VV&A of related research studies, the standards, frameworks, techniques, methods and tools have been discussed according to the characteristics of large-scale simulations (such as crowd network simulations).

Findings

The contributions of this paper will be useful for both academics and practitioners for formulating VV&A in large-scale simulations (such as crowd network simulations).

Originality/value

This paper will help researchers to provide support of a recommendation for formulating VV&A in large-scale simulations (such as crowd network simulations).

Details

International Journal of Crowd Science, vol. 3 no. 1
Type: Research Article
ISSN: 2398-7294

Keywords

Content available
Article
Publication date: 30 May 2023

Benjamin Leiby and Darryl Ahner

This paper aims to examine how the regional variable in country conflict modeling affects forecast accuracy and identifies a methodology to further improve the predictions.

Abstract

Purpose

This paper aims to examine how the regional variable in country conflict modeling affects forecast accuracy and identifies a methodology to further improve the predictions.

Design/methodology/approach

This paper uses statistical learning methods to both evaluate the quantity of data for clustering countries along with quantifying accuracy according to the number of clusters used.

Findings

This study demonstrates that increasing the number of clusters for modeling improves the ability to predict conflict as long as the models are robust.

Originality/value

This study investigates the quantity of clusters used in conflict modeling, while previous research assumes a specific quantity before modeling.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Book part
Publication date: 29 January 2021

Olga Zlatkin-Troitschanskaia and Miriam Toepper

This chapter outlines the challenges that research and practice in higher education have faced in measuring students' competences and learning outcomes. Particular attention is…

Abstract

This chapter outlines the challenges that research and practice in higher education have faced in measuring students' competences and learning outcomes. Particular attention is given to the systematic and institutional contexts in Germany. Based on the outlined national and international contextual framework, the Germany-wide program “Modeling and Measuring Competences in Higher Education (KoKoHs)” is discussed in terms of its two central working stages, key outcomes and lessons learned. In particular, the central results of the second phase are presented for the first time and integrated into the current state of international research. Based on this analysis, perspectives for further research on student learning in higher education and implications for practice and policy are derived.

Article
Publication date: 9 November 2020

Meisam Hassani, Mohammad Safi, Reza Rasti Ardakani and Amir Saedi Daryan

This paper aims to predict the fire resistance of steel-reinforced concrete columns by application of the genetic algorithm.

Abstract

Purpose

This paper aims to predict the fire resistance of steel-reinforced concrete columns by application of the genetic algorithm.

Design/methodology/approach

In total, 11 effective parameters are considered including mechanical and geometrical properties of columns and loading values as input parameters and the duration of concrete resistance at elevated temperatures as the output parameter. Then, experimental data of several studies – with extensive ranges – are collected and divided into two categories.

Findings

Using the first set of the data along with the gene expression programming (GEP), the fire resistance predictive model of steel-reinforced concrete (SRC) composite columns is presented. By application of the second category, evaluation and validation of the proposed model are investigated as well, and the correspondent time-temperature diagrams are derived.

Originality/value

The relative error of 10% and the R coefficient of 0.9 for the predicted model are among the highlighted results of this validation. Based on the statistical errors, a fair agreement exists between the experimental data and predicted values, indicating the appropriate performance of the proposed GEP model for fire resistance prediction of SRC columns.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 December 2004

A. Deraemaeker, P. Ladevèze and T. Romeuf

In this paper, we discuss the application of the constitutive relation error (CRE) to model updating and validation in the context of uncertain measurements. First, a parallel is…

Abstract

In this paper, we discuss the application of the constitutive relation error (CRE) to model updating and validation in the context of uncertain measurements. First, a parallel is drawn between the CRE method and a general theory for inverse problems proposed by Tarantola. Then, an extension of the classical CRE method considering uncertain measurements is proposed. It is shown that the proposed mechanics‐based approach for model validation is very effective in filtering noise in the experimental data. The method is applied to an industrial structure, the SYLDA5, which is a satellite support for Ariane5. The results demonstrate the robustness of the method in actual industrial situations.

Details

Engineering Computations, vol. 21 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 56000