Search results

1 – 10 of over 64000
Article
Publication date: 21 July 2023

Dongju Chen, Yueqiang Sun, You Zhao, Kun Sun and Jinwei Fan

The accuracy of the machining process is significantly impacted by the performance of hydrostatic bearings. This paper aims to analyze the influence of micro-textured on the…

Abstract

Purpose

The accuracy of the machining process is significantly impacted by the performance of hydrostatic bearings. This paper aims to analyze the influence of micro-textured on the performance of the hydrostatic bearing, and the performance of the bearing is improved by designing the arrangement of micro-textured.

Design/methodology/approach

Different designs have been used while creating micro-textured bearings. The finite element models of bearing with smooth and micro-textured were established and solved using the computational fluid dynamics method. The arrangement scheme of the micro-textured was evaluated by comparing the influence of the distribution position and arrangement of the micro-textured on the bearing performance.

Findings

To improve the performance of the bearing, the bearing capacity was significantly increased, and the friction coefficient of the bearing was decreased when the micro-textured was distributed in the form of an obtuse angle arrangement in the maximum pressure area of the bearing. The experimental findings validate the analysis method.

Originality/value

In this paper, the effect of irregularly arranged micro-textured on bearing performance is investigated to improve the bearing capacity and lubrication status.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 April 2024

Thuy Thanh Tran, Roger Leonard Burritt, Christian Herzig and Katherine Leanne Christ

Of critical concern to the world is the need to reduce consumption and waste of natural resources. This study provides a multi-level exploration of the ways situational and…

Abstract

Purpose

Of critical concern to the world is the need to reduce consumption and waste of natural resources. This study provides a multi-level exploration of the ways situational and transformational links between levels and challenges are related to the adoption and utilization of material flow cost accounting in Vietnam, to encourage green productivity.

Design/methodology/approach

Based on triangulation of public documents at different institutional levels and a set of semi-structured interviews, situational and transformational links and challenges for material flow cost accounting in Vietnam are examined using purposive and snowball sampling of key actors.

Findings

Using a multi-level framework the research identifies six situational and transformational barriers to implementation of material flow cost accounting and suggests opportunities to overcome these. The weakest links identified involve macro-to meso-situational and micro-to macro-transformational links. The paper highlights the dominance of meso-level institutions and lack of focus on micro transformation to cut waste and enable improvements in green productivity.

Practical implications

The paper identifies ways for companies in Vietnam to reduce unsustainability and enable transformation towards sustainable management and waste reduction.

Originality/value

The paper is the first to develop and use a multi-level/multi-time period framework to examine the take-up of material flow cost accounting to encourage transformation towards green productivity. Consideration of the Vietnamese case builds understanding of the challenges for achieving United Nations Sustainable Development Goal number 12, to help enable sustainable production and consumption patterns.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 16 April 2024

Himani Sharma, Varsha Jain, Emmanuel Mogaji and Anantha S. Babbilid

Proponents of micro-credentials envision them as vehicles for upskilling or re-skilling individuals. The study examines how integrating micro-credentials in the higher education…

Abstract

Purpose

Proponents of micro-credentials envision them as vehicles for upskilling or re-skilling individuals. The study examines how integrating micro-credentials in the higher education ecosystem enhances employability. It aims to offer insights from the perspective of stakeholders who may benefit from these credentials at an institutional or individual level.

Design/methodology/approach

Online in-depth interviews are conducted with 65 participants from India, Nigeria, the United Arab Emirates and the United Kingdom to explore how micro-credentials can be a valuable addition to the higher education ecosystem. A multi-stakeholder approach is adopted to collect data.

Findings

The analysis highlights two possible methods of integrating micro-credentials into the higher education ecosystem. First, micro-credentials-driven courses can be offered using a blended approach that provides a flexible learning path. Second, there is also the possibility of wide-scale integration of micro-credentials as an outcome of standalone online programs. However, the effectiveness of such programs is driven by enablers like student profiles, standardization and the dynamics of the labor market. Finally, the study stipulates that micro-credentials can enhance employability.

Originality/value

The study's findings suggest that, for successful integration of micro-credentials, an operational understanding of micro-credentials, their enablers and strategic deliberation are critical in higher education. Institutions must identify the determinants, address technological limitations and select a suitable delivery mode to accelerate integration. However, micro-credentials can augment employability, considering the increasing emphasis on lifelong learning. An overview of the findings is presented through a comprehensive framework.

Details

International Journal of Educational Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-354X

Keywords

Article
Publication date: 21 March 2024

Guiwen Liu, Yue Yang, Kaijian Li, Asheem Shrestha and Taozhi Zhuang

Micro-regeneration can effectively enhance a neighborhood’s commercial vitality and serve as a viable approach to boost economic benefits. However, the small scale of micro

47

Abstract

Purpose

Micro-regeneration can effectively enhance a neighborhood’s commercial vitality and serve as a viable approach to boost economic benefits. However, the small scale of micro-regeneration efforts and the fragmented nature of information currently limit the availability of strong empirical evidence demonstrating its impact on neighborhood commercial vitality. The aim of the study was to examine the link between micro-regeneration and neighborhood commercial vitality, focusing on the average, time-lag, spatial spillover, and spatial heterogeneity effects.

Design/methodology/approach

Using the panel data set of 1,755 neighborhoods in Chongqing from 2016 to 2021 as the research sample, the difference-in-differences (DID) method was employed in this study to explore the impact micro-regeneration has on neighborhood commercial vitality.

Findings

The results illustrate that: (1) micro-regeneration can promote neighborhood commercial vitality in terms of the number and types of local consumption amenities by 27.76 and 5.89%, respectively, with no time-lag effect; (2) the positive spillovers can exist within the range of 5,000 meters–5,500 meters of regenerated neighborhoods; and (3) the effect of micro-regeneration on neighborhood commercial vitality can be greater in peripheral areas than in core areas of the city.

Originality/value

The findings fill the knowledge gap on the relationship between micro-regeneration and neighborhood commercial vitality. Additionally, the results on the time-lag effect, spatial spillover effects, and spatial heterogeneity provide practical implications that can support the government and private sector in developing temporal and spatial arrangements for micro-regeneration projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 May 2013

Xiong Liang, Bing Li, Xiaoyu Wu, Hongyan Shi, Kun Zeng and Yatao Wang

The purpose of this paper is to present a method for ultrasonically molding polymer powder in a micro plastic part mold. In the method, a printed circuit board (PCB) in which micro

Abstract

Purpose

The purpose of this paper is to present a method for ultrasonically molding polymer powder in a micro plastic part mold. In the method, a printed circuit board (PCB) in which micro‐hole arrays are drilled is used as a micro cavity insert. With the utilization of ultrasonic vibration, the polymer powder, which is prefilled and compacted in a micro cavity, mutually generates great sliding friction heat so as to be rapidly plasticized and molded.

Design/methodology/approach

Micro carbide drill bits of which the diameters are 100.0 μm, 150.0 μm and 200.0 μm, respectively, are used for drilling the PCB to form a micro‐hole array insert. Next, two kinds of various ultra‐high molecule weight polyethylene (UHMW‐PE) powder with various grain diameters are directly filled into a charging barrel and a mold cavity with the micro‐hole array insert. Proper process parameters are set on ultrasonic plasticizing and molding equipment so that a molding test can be performed. The melt of UHMW‐PE can be rapidly filled into the cavity. Finally, micro‐column array plastic parts are successfully prepared.

Findings

The micro‐hole array PCB is a mold insert which is quite applicable for the ultrasonic molding of the powder in the mold. When a molding material is the coarse UHMW‐PE powder with the grain diameter of about 350 μm, the diameter replication rates of the micro‐column array plastic parts become good in order with the increased micro‐hole diameter of the PCB. When the fine UHMW‐PE powder with the grain diameter of about 80 μm is adopted, the diameter replication rates of the micro‐column array plastic parts become good in order with the decreased micro‐hole diameter of the PCB.

Originality/value

In this paper, the micro‐column array plastic parts with good replicability are successfully prepared by a technique for ultrasonically plasticizing and molding in the cavity. The technique can be applied to the fields of medical treatment, communication, optics, chemistry and so on, such as biological micro needle arrays, micro biological chips, optical memories, and micro chemical reaction chips.

Article
Publication date: 1 January 2005

K. Jeevan, G.A. Quadir, K.N. Seetharamu, I.A. Azid and Z.A. Zainal

To determine the optimal dimensions for a stacked micro‐channel using the genetic algorithms (GAs) under different flow constraints.

Abstract

Purpose

To determine the optimal dimensions for a stacked micro‐channel using the genetic algorithms (GAs) under different flow constraints.

Design/methodology/approach

GA is used as an optimization tool for optimizing the thermal resistance of a stacked micro‐channel under different flow constraints obtained by using the one dimensional (1D) and two dimensional (2D) finite element methods (FEM) and by thermal resistance network model as well (proposed by earlier researcher). The 2D FEM is used to study the effect of two dimensional heat conduction in the micro‐channel material. Some parametric studies are carried out to determine the resulting performance of the stacked micro‐channel. Different number of layers of the stacked micro‐channel is also investigated to study its effect on the minimum thermal resistance.

Findings

The results obtained from the 1D FEM analysis compare well with those obtained from the thermal resistance network model. However, the 2D FEM analysis results in lower thermal resistance and, therefore, the importance of considering the conduction in two dimensions in the micro‐channel is highlighted.

Research limitations/implication

The analysis is valid for constant properties fluid and for steady‐state conditions. The top‐most surfaces as well as the side surfaces of the micro‐channel are considered adiabatic.

Practical implications

The method is very useful for practical design of micro‐channel heat‐sinks.

Originality/value

FEM analyses of stacked micro‐channel can be easily implemented in the optimization procedure for obtaining the dimensions of the stacked micro‐channel heat‐sinks for minimum thermal resistance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Hongyan Shi, Jiali Ning and Qiuxin Yan

The purpose of this paper is to calibrate the surface emissivity of micro drill bit and to investigate the effect of different drilling parameters on the temperature of micro

Abstract

Purpose

The purpose of this paper is to calibrate the surface emissivity of micro drill bit and to investigate the effect of different drilling parameters on the temperature of micro drill bit in printed circuit board (PCB) micro drilling process.

Design/methodology/approach

The surface emissivity of micro drill bit was obtained by experiments. Analysis of variance (ANOVA) was applied in this study to analysis the effect of different drilling parameters on the temperature of micro drill bit in PCB micro hole drilling. The most significant influencing factor on micro drill bit temperature was achieved by ANOVA.

Findings

First, the surface emissivity of cemented carbide rod decreased from 0.4 to 0.32 slowly with temperature in the range of 50-220°C. Second, the most significant influencing factor on the micro drill bit temperature was spindle speed among the drilling parameters including spindle speed, retract rate and infeed rate.

Research limitations/implications

In this paper, the influence of roughness of black coating, carbide rod and micro drill bit on the surface emissivity calibration and the temperature measurement was not considered.

Originality/value

A new simple method has been presented to calibrate the surface emissivity of micro drill bit. Through calibrating the surface emissivity of micro drill bit, the temperature of micro drill bit can be measured accurately by infrared thermometry. Analyzing the influences of different drilling parameters on the temperature of micro drill bit, the mechanism of drilling parameters on drilling temperature is achieved. The basis for the selection of drilling parameters to improve the hole quality is enhanced.

Details

Circuit World, vol. 42 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 February 2015

Hongyan Shi, Hui Li and Shengzhi Chen

The purpose of this paper is to obtain the micro drill bit temperature field distribution in micro-drilling process and the temperature drop in retracting process with simulation…

Abstract

Purpose

The purpose of this paper is to obtain the micro drill bit temperature field distribution in micro-drilling process and the temperature drop in retracting process with simulation software. Meanwhile, the key factors that affect the micro drill bit temperature will be obtained as well. The results can also be used to improve the accuracy in on-line drilling temperature measurement.

Design/methodology/approach

The purpose of this paper is to obtain the micro drill bit temperature field distribution in micro-drilling process and the temperature drop in retracting process with simulation software. Meanwhile, the key factors that affect the micro drill bit temperature will be obtained as well. The results can also be used to improve the accuracy in on-line drilling temperature measurement.

Findings

Micro drill bit high-temperature area mainly concentrates in the cutting edge and chisel edge. With the increase of spindle speed and feed speed, the micro drill bit highest temperature increased. The micro drill bit temperature drop rate reaches 20° in the micro-drilling retraction process with certain parameters. The micro drill bit highest temperature detected by an infrared camera is lower by 22° than that in real drilling. The simulation results can be used to guide the actual industrial production.

Originality/value

The simulation results can be applied to revise the temperature measurement by an infrared camera in the drilling process. Drilling experiments show that the simulation method is correct and has certain practical significance. The current temperature measurement method can satisfy most of the requirements of temperature measurements.

Details

Circuit World, vol. 41 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 23 November 2010

Lianyu Fu, Xueguang Li and Qiang Guo

The purpose of this paper is to present key points relating to the development of micro drill bits with high aspect ratios and to provide a solution for high aspect ratio hole…

Abstract

Purpose

The purpose of this paper is to present key points relating to the development of micro drill bits with high aspect ratios and to provide a solution for high aspect ratio hole drilling.

Design/methodology/approach

Based on the analysis of challenges in high aspect ratio hole drilling, key points for the development of micro drills bit with high aspect ratio are discussed. A design example of a micro drill bit with 0.3 mm diameter and a 7.2 mm flute length is presented. Experiments are conducted to verify the performance of the developed micro drill bit.

Findings

Helix angle, web thickness and flute land ratio are three key parameters that significantly influence the behaviour of micro drill bits with high aspect ratios. Large helix angle, web thickness and flute land ratio are beneficial in terms of improving the performance of high aspect ratio micro drill bits. Step drilling is essential to prevent drill breakage and to ensure smooth debris evacuation. Meanwhile, proper steps and drilling parameters are of great importance to complete high aspect ratio hole drilling.

Originality/value

The paper highlights key points relating to the development of micro drill bits with high aspect ratios that can provide a satisfactory solution for high aspect ratio micro drill bit design.

Details

Circuit World, vol. 36 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 25 October 2018

Xiaohong Lu, FuRui Wang, Zhenyuan Jia and Steven Y. Liang

Cutting tool wear is known to affect tool life, surface quality, cutting forces and production time. Micro-milling of difficult-to-cut materials like Inconel 718 leads to…

Abstract

Purpose

Cutting tool wear is known to affect tool life, surface quality, cutting forces and production time. Micro-milling of difficult-to-cut materials like Inconel 718 leads to significant flank wear on the cutting tool. To ensure the respect of final part specifications and to study cutting forces and tool catastrophic failure, flank wear (VB) has to be controlled. This paper aims to achieve flank wear prediction during micro-milling process, which fills the void of the commercial finite element software.

Design/methodology/approach

Based on tool geometry structure and DEFORM finite element simulation, flank wear of the micro tool during micro-milling process is obtained. Finally, experiments of micro-milling Inconel 718 validate the accuracy of the proposed method for predicting flank wear of the micro tool during micro-milling Inconel 718.

Findings

A new prediction method for flank wear of the micro tool during micro-milling Inconel 718 based on the assumption that the wear volume can be assumed as a cone-shaped body is proposed. Compared with the existing experiment techniques for predicting tool wear during micro-milling process, the proposed method is simple to operate and is cost-effective. The existing finite element investigations on micro tool wear prediction mainly focus on micro tool axial wear depth, which affects size accuracy of machined workpiece seriously.

Originality/value

The research can provide significant knowledge on the usage of finite element method in predicting tool wear condition during micro-milling process. In addition, the method presented in this paper can provide support for studying the effect of tool flank wear on cutting forces during micro-milling process.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 64000