Search results

1 – 10 of over 142000
Article
Publication date: 4 October 2011

Yonghua Chen and Chen Zhezheng

The main purpose of this study is to develop a systematic method that can minimize joint clearance for non‐assembly mechanism fabrication using a layer‐based fabrication…

1703

Abstract

Purpose

The main purpose of this study is to develop a systematic method that can minimize joint clearance for non‐assembly mechanism fabrication using a layer‐based fabrication technology.

Design/methodology/approach

Joint clearance is one of the key factors affecting a mechanism's performance. Hertz theory is adopted to analyze the joint clearance‐penetration displacement relationship and the impact force‐displacement relationship. This analysis has indicated the importance of reducing joint clearance. To reduce joint clearance in layer‐based fabrication, a drum‐shaped roller is proposed for pin joint design in non‐assembly mechanism fabrication. Compared to cylindrical pin joint design, a drum‐shaped roller joint results in less impact force in mechanism operation. Furthermore, the joint clearance can also be drastically reduced.

Findings

Large joint clearance could introduce instability into the dynamic behaviour of a mechanism. By applying a drum‐shaped roller, the instability could apparently be alleviated. This has been demonstrated by both simulation and fabrication of a number of mechanisms with and without drum‐shaped pin joints.

Practical implications

Since the proposed joint design can reduce the joint clearance in rapid fabrication of non‐assembly mechanisms, it is possible to expand layer‐based rapid fabrication techniques for more mechanism design applications.

Originality/value

Layer‐based fabrication technologies have two distinct advantages: building parts without geometry restriction; and building sub‐systems (static or mobile) without the need for assembly. Only very few previous studies have investigated the applications that can benefit from the second advantage due to the limited accuracy of layer‐based technologies in making joints of a mechanism. Through the proposed drum‐shaped roller pin joint design together with the proposed joint design guidelines, joint clearance can be reduced significantly. Thus, sub‐systems or mechanisms built using layer‐based technologies could have accuracy close to the design specification. This will expand the application of layer‐based technologies to more mechanism or mobile mechanical system studies.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2023

Hasan Humayun, Masitah Ghazali and Mohammad Noman Malik

The motivation to participate in crowdsourcing (CS) platforms is an emerging challenge. Although researchers and practitioners have focused on crowd motivation in the past, the…

Abstract

Purpose

The motivation to participate in crowdsourcing (CS) platforms is an emerging challenge. Although researchers and practitioners have focused on crowd motivation in the past, the results obtained through such practices have not been satisfactory. Researchers have left unexplored research areas related to CS pillars, such as the evolution of the crowd’s primary motivations, seekers applying effective policies and incentives, platform design challenges and addressing task complexity using the synchronicity of the crowd. Researchers are now more inclined to address these issues by focusing on sustaining the crowd’s motivation; however, sustaining the crowd’s motivation has many challenges.

Design/methodology/approach

To fill this gap, this study conducted a systematic literature review (SLR) to investigate and map the challenges and factors affecting sustained motivation during CS with the overcoming implications. Studies that satisfied the inclusion criteria were published between 2010 and 2021.

Findings

Important sustainable factors are extracted using the grounded theory that has sustained participation and the factors' cohesion leads to the identification of challenges that the pillars of CS face. Crowds being the most vital part of CS contests face the challenge of engagement. The results reported the factors that affect the crowd’s primary and post-intentions, perceived value of incentives and social and communal interaction. Seekers face the challenge of knowledge and understanding; the results identify the reason behind the crowd’s demotivation and the impact of theories and factors on the crowd's psychological needs which helped in sustaining participation. Similarly, the platforms face the challenge of being successful and demanding, the results identify the latest technologies, designs and features that seekers proclaim and need the platforms designer's attention. The identified task challenges are completion and achievement; the authors have identified the impact of trait of task and solving mechanisms that have sustained participation.

Originality/value

The study identifies, explores and summarizes the challenges on CS pillars researchers are facing now to sustain contributions by keeping participants motivated during online campaigns. Similarly, the study highlights the implication to overcome the challenges by identifying and prioritizing the areas concerning sustainability through the adoption of innovative methods or policies that can guarantee sustained participation.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 11 March 2019

Guoda Chen, Huafeng Yang, Huiqiang Cao, Shiming Ji, Xi Zeng and Qian Wang

For the climbing rod object with large diameter variation and the need of obstacle crossing, this paper aims to propose a new embracing-type climbing robot named as EVOC-I robot.

Abstract

Purpose

For the climbing rod object with large diameter variation and the need of obstacle crossing, this paper aims to propose a new embracing-type climbing robot named as EVOC-I robot.

Design/methodology/approach

The design philosophy and structural scheme are introduced. The kinematic analysis of embracing and telescoping mechanisms is carried out to provide the theoretical foundation for the effective climbing of the robot. Based on the prototype robot, three preliminary experiments are carried out to verify the effectiveness of the designed robot.

Findings

The theoretical and experimental analyses have verified the reasonability and effectiveness of the proposed robot design.

Research limitations/implications

As the preliminary study, the prototype still need a lot of improvement. The experimental verification is also limited. Future work will focus on improving the design and increasing the theoretical analysis, especially increasing experimental study and designing the next generation of the rod climbing robot.

Practical implications

The designed climbing robot can be used for climbing the rod with variation diameter and flange obstacle, especially the lightening rod in the transformer substation.

Originality/value

The paper designs a new climbing robot that integrates the ability of large variation diameter adaptation and obstacle crossing.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 November 2019

Serhat Aksungur, Muhammet Aydin and Oğuz Yakut

The purpose of this study is to design and manufacture a new remote center of motion (RCM) mechanism for use in laparoscopic surgical operations. In addition, obtaining the…

Abstract

Purpose

The purpose of this study is to design and manufacture a new remote center of motion (RCM) mechanism for use in laparoscopic surgical operations. In addition, obtaining the forward and inverse kinematic equations of the RCM mechanism and performing real-time position control with the Proportional–Integral–Derivative (PID) control method.

Design/methodology/approach

At the design stage, it is benefited from similar triangle rule. To obtain the kinematic equations in a simple way and facilitate control, two-fold displacement ratio is provided between the limbs where linear motion occurs. The rotation and displacement amounts required to move at the RCM point have been calculated by using the kinematic equations of the mechanism. Limb dimensions and motion limits are determined in the manner to avoid singularities and collisions. The x, y and z coordinates of the end effector have been defined as the reference point. Control of the mechanism was provided by PID control. To generate the user interface and control algorithm, MATLAB/Simulink real-time toolbox has been used. Four reference points were determined, control was performed and position error values were examined. MF634 Humusoft data acquisition card has been preferred to collect data from encoders.

Findings

A novel RCM mechanism has been designed and manufactured. Kinematic equations of this mechanism have been obtained. Position control of the cannula tip has been performed using PID control method for four different reference points. After settlement, maximum position error has been observed as 0.45 mm.

Practical implications

Structure of the designed mechanism is quite simple. Thus, costs are quite low. The operation area of the operator is widened by hanging the mechanism from the ceiling, so operational capability of health personnel is increasing. It helps to decrease the operation time and increase the success of the operation.

Originality/value

With this study, it is aimed to contribute to the literature by designing a new RCM mechanism. The rotation of the mechanism around the RCM point is provided by only one rotary motor, and the displacement of the RCM point in the vertical axis is provided by only one linear motor. The mechanism is also a surgical robot. The designed system is suitable for use in robot-assisted laparoscopic surgery in terms of maneuverability.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2012

Hongli Wang and Yunbo Lu

The purpose of this paper is to investigate the new concept of trust governance and how to design trust‐related governance mechanisms.

Abstract

Purpose

The purpose of this paper is to investigate the new concept of trust governance and how to design trust‐related governance mechanisms.

Design/methodology/approach

The paper defines trust governance based on the nature of governance, and proposes the micro design approach from the perspective of active interpersonal strategy. Based on a literature review, trust governance emerges as a new organizing principle which needs to be taken into account when considering the fast development of knowledge. Active interpersonal strategy is highlighted as a way to build trust and several governance mechanisms are proposed.

Findings

This paper concludes that trust governance is an important and new research field, and is also a necessary route of organizational promotion from human control to self‐control. Interpersonal threat control strategy could understand and drop a hint about others'cognitive risk. Active trust could excite trust by virtue of active express friendship. Such active interpersonal strategies enable the manager to explore the situational confidence from the micro individual level, and facilitate the micro‐mechanism design.

Originality/value

The paper shows that trust governance could initiate the innovation performance of individuals, and promote interpersonal trust development and evolution.

Details

Nankai Business Review International, vol. 3 no. 2
Type: Research Article
ISSN: 2040-8749

Keywords

Article
Publication date: 23 January 2019

Huang Jianbin, Li Zhi, Huang Longfei, Meng Bo, Han Xu and Pang Yujia

According to the requirements of servicing and deorbiting the failure satellites, especially the tumbling ones on geosynchronous orbit, this paper aims to design a docking…

412

Abstract

Purpose

According to the requirements of servicing and deorbiting the failure satellites, especially the tumbling ones on geosynchronous orbit, this paper aims to design a docking mechanism to capture these tumbling satellites in orbit, to analyze the dynamics of the docking system and to develop a new collision force-limited control method in various docking speeds.

Design/methodology/approach

The mechanism includes a cone-rod mechanism which captures the apogee engine with a full consideration of despinning and damping characteristics and a locking and releasing mechanism which rigidly connects the international standard interface ring (Marman rings, such as 937B, 1194 and 1194A mechanical interface). The docking mechanism was designed under-actuated, aimed to greatly reduce the difficulty of control and ensure the continuity, synchronization and force uniformity under the process of repeatedly capturing, despinning, locking and releasing the tumbling satellite. The dynamic model of docking mechanism was established, and the impact force was analyzed in the docking process. Furthermore, a collision detection and compliance control method is proposed by using the active force-limited Cartesian impedance control and passive damping mechanism design.

Findings

A variety of conditions were set for the docking kinematics and dynamics simulation. The simulation and low-speed docking experiment results showed that the force translation in the docking phase was stable, the mechanism design scheme was reasonable and feasible and the proposed force-limited Cartesian impedance control could detect the collision and keep the external force within the desired value.

Originality/value

The paper presents a universal docking mechanism and force-limited Cartesian impedance control approach to capture the tumbling non-cooperative satellite. The docking mechanism was designed under-actuated to greatly reduce the difficulty of control and ensure the continuity, synchronization and force uniformity. The dynamic model of docking mechanism was established. The impact force was controlled within desired value by using a combination of active force-limited control approach and passive damping mechanism.

Article
Publication date: 11 September 2019

Bing Qing Tan, Su Xiu Xu, Ray Zhong, Meng Cheng and Kai Kang

The purpose of this paper is to design a parking space management platform to alleviate the parking problem and a two-stage solution for sharing and allocating parking spaces.

Abstract

Purpose

The purpose of this paper is to design a parking space management platform to alleviate the parking problem and a two-stage solution for sharing and allocating parking spaces.

Design/methodology/approach

The market design mechanism and auction mechanism are integrated to solve the problem of parking space sharing and allocation. In the first stage, the market design mechanism with two rules is applied for making the good use of idle parking spaces. In the second stage, two sequential auction mechanisms are designed by extending first/second-price sealed bid auction mechanism to allocate both private and public parking spaces, which are received in previous stage and owned by the platform. Two stages are connected through a forecasted price which is calculated through the exponential smoothing method.

Findings

First, we prove three important properties of the proposed sequential auction mechanisms, namely, incentive compatibility, revenue equivalence and individual rationality. Second, a simulation study is used to verify the effectiveness of the mechanisms through numerical analysis. The impact of the system on three parts, namely, agents (private parking space suppliers), bidders (parking space customers) and the platform, is examined. Third, the results show that the sharing mechanism with monetrary incentive will attract a number of agents to join in the platform. The bidders are also able to obtain considerable utility, as compared with the (average) market parking fees. The platform can thus effectively allocate parking spaces with reasonable prices.

Originality/value

This paper combines the classical sequential auction mechanisms with the market design mechanism for the parking space sharing and allocation problem. The modeling and analysis method can also be used to address the similar allocation and pricing problems of other resources like bicycle sharing.

Details

Industrial Management & Data Systems, vol. 119 no. 8
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 12 August 2020

Ngoc Le Chau, Ngoc Thoai Tran and Thanh-Phong Dao

Compliant mechanism has been receiving a great interest in precision engineering. However, analytical methods involving their behavior analysis is still a challenge because there…

Abstract

Purpose

Compliant mechanism has been receiving a great interest in precision engineering. However, analytical methods involving their behavior analysis is still a challenge because there are unclear kinematic behaviors. Especially, design optimization for compliant mechanisms becomes an important task when the problem is more and more complex. Therefore, the purpose of this study is to design a new hybrid computational method. The hybridized method is an integration of statistics, numerical method, computational intelligence and optimization.

Design/methodology/approach

A tensural bistable compliant mechanism is used to clarify the efficiency of the developed method. A pseudo model of the mechanism is designed and simulations are planned to retrieve the data sets. Main contributions of design variables are analyzed by analysis of variance to initialize several new populations. Next, objective functions are transformed into the desirability, which are inputs of the fuzzy inference system (FIS). The FIS modeling is aimed to initialize a single-combined objective function (SCOF). Subsequently, adaptive neuro-fuzzy inference system is developed to modeling a relation of the main geometrical parameters and the SCOF. Finally, the SCOF is maximized by lightning attachment procedure optimization algorithm to yield a global optimality.

Findings

The results prove that the present method is better than a combination of fuzzy logic and Taguchi. The present method is also superior to other algorithms by conducting non-parameter tests. The proposed computational method is a usefully systematic method that can be applied to compliant mechanisms with complex structures and multiple-constrained optimization problems.

Originality/value

The novelty of this work is to make a new approach by combining statistical techniques, numerical method, computational intelligence and metaheuristic algorithm. The feasibility of the method is capable of solving a multi-objective optimization problem for compliant mechanisms with nonlinear complexity.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 March 2022

X.R. Lü, Z. Liu, X.L. Lü and X. Wang

This study aims to improve the automatic leveling performance of tractor body in hilly and mountainous areas by designing a kind of controllable and adaptive leveling mechanism of…

Abstract

Purpose

This study aims to improve the automatic leveling performance of tractor body in hilly and mountainous areas by designing a kind of controllable and adaptive leveling mechanism of tractor body.

Design/methodology/approach

The mechanism is mainly composed of longitudinal slope leveling mechanism, transverse slope leveling mechanism and control components. According to the tractor body attitude in operation, the longitudinal slope leveling and lateral slope leveling can coordinate to realize the adaptive adjustment of tractor body. For this mechanism, the support mode of the linear three-point support and plane positioning combining is designed, and the leveling method of electromechanical combination is designed. The servo motor controls the longitudinal slope leveling mechanism through the reducer with self-locking function to realize the longitudinal leveling, and the servo driver controls the expansion and contraction of electric cylinder to realize lateral leveling. The designed mode can realize the relative independence and coordination of leveling in different directions.

Findings

The performance test results of the leveling mechanism are shown: the mechanism can work normally; the leveling accuracy can reach within 1°; and the leveling accuracy and stability can meet the design requirements. The leveling accuracy and stability of longitudinal slope are higher than that of lateral slope, and the coordination leveling effect of longitudinal slope and lateral slope is better than that of the independent leveling.

Originality/value

This study provides a technical reference for the design of leveling device of agricultural machines and tools in hilly and mountainous areas.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 August 2010

Rubén Ansola, Estrella Vegueria and Javier Canales

The purpose of this paper is to describe an element addition strategy for topology optimization of thermally actuated compliant mechanisms under uniform temperature fields.

Abstract

Purpose

The purpose of this paper is to describe an element addition strategy for topology optimization of thermally actuated compliant mechanisms under uniform temperature fields.

Design/methodology/approach

The proposed procedure is based on the evolutionary structural optimization (ESO) method. In previous works, this group of authors has successfully applied the ESO method for compliant mechanism optimization under directly applied input loads. The present paper progresses on this work line developing an extension of this procedure, based on an additive version of the method, to approach the more complicated case of thermal actuators.

Findings

The adopted method has been tested in several numerical applications and benchmark examples to illustrate and validate the approach, and designs obtained with this method are compared favorably with the analytical solutions and results derived by other authors using different optimization methods, showing the viability of this technique for uniformly heated actuators optimization.

Research limitations/implications

As a simple initial approach, this research considers only uniform heating of the system, while many thermal actuators are heated nonuniformly. Future works will be based on electrothermal actuation, and nonuniform Joule heating will be considered as well, which might lead to more elegant and efficient solutions.

Practical implications

Compliant micromechanisms that are responsible for movement play a crucial role in microelectromechanical systems (MEMS) design, which cannot be manufactured using typical assembly processes and may not make use of traditional hinges or bearings. The topology optimization method described in this paper enables the systematic design of these devices, which can result in reduced conception time and manufacturing cost.

Originality/value

The ESO method has been successfully applied to several optimum material distribution problems, but not for thermal compliant mechanisms. Even if most applications of this method have been oriented for maximum stiffness structure design, this paper shows that this computation method may be also useful in the design of thermal compliant mechanisms and provides engineers with a very simple and practical alternative design tool.

Details

Engineering Computations, vol. 27 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 142000