Search results

1 – 10 of over 113000
Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Book part
Publication date: 25 July 1997

Les Gulko

Abstract

Details

Applying Maximum Entropy to Econometric Problems
Type: Book
ISBN: 978-0-76230-187-4

Article
Publication date: 25 January 2024

Chun Qiang Jia, Aofei Wang, Ling Yu and Li Zong

The rock drill’s drill tail experiences high-frequency fretting simultaneously in the rotational and axial directions. Due to the complex working characteristics and the low…

Abstract

Purpose

The rock drill’s drill tail experiences high-frequency fretting simultaneously in the rotational and axial directions. Due to the complex working characteristics and the low viscosity of the water medium, the pure water seal is susceptible to damage and failure. The purpose of this paper is to enhance the water seal’s performance.

Design/methodology/approach

The Y-shaped seal ring is modeled and simulated using orthogonal testing. Through analysis of the impact of various seal section parameters on sealing performance, the maximum contact stress and maximum Von Mises stress are selected as indicators of sealing effectiveness.

Findings

The maximum contact stress is proportional to lip thickness and chamfer length but inversely proportional to lip length. Meanwhile, the maximum Von Mises stress is directly influenced by lip depth and the included angle of the lip and drill tail but is inversely proportional to the lip thickness. The enhanced Y-shaped water seal sees reductions of 15% and 45% in maximum contact stress and maximum Von Mises stress, respectively.

Originality/value

This paper used analytical method and model that is helpful for design of the water seal’s structure in complex working characteristics and the low viscosity of the water medium.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0366/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 1989

William Giles

In this, the second edition, the experience of actually running amarketing planning process in organisations further updates and revisesthe highly practical emphasis. The need for…

1542

Abstract

In this, the second edition, the experience of actually running a marketing planning process in organisations further updates and revises the highly practical emphasis. The need for vision, how to enunciate it, and the interface between various levels of managers are integrated specifically into the process. Further analysis using the SWOT technique is provided together with enhanced insight into maintaining competitive advantage. Essentially a practical manual on running a planning process, the worksheet method has been well tried and tested. The experience of managers who have implemented the process using the first edition is included to enhance the technique′s dynamism and effectiveness.

Details

Marketing Intelligence & Planning, vol. 7 no. 3/4
Type: Research Article
ISSN: 0263-4503

Keywords

Article
Publication date: 1 January 1955

T. Nonweiler

We shall attempt here to summarize the existing data on the values of the low‐speed CLmax. of wings, in the absence of a fuselage, and without including information on stalling…

Abstract

We shall attempt here to summarize the existing data on the values of the low‐speed CLmax. of wings, in the absence of a fuselage, and without including information on stalling incidence or pitching moment. The summary is limited to the consideration of unswept wings, and those of delta plan form, which have symmetrical sections: there is some discussion of the maximum lift increments due to the use of flaps of various kinds.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 15 June 2021

Aydin Shishegaran, Behnam Karami, Elham Safari Danalou, Hesam Varaee and Timon Rabczuk

The resistance of steel plate shear walls (SPSW) under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the conventional weapons…

Abstract

Purpose

The resistance of steel plate shear walls (SPSW) under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the conventional weapons effect program (CONWEP) model for the explosive load and the Johnson-Cook model for the steel plate. Based on the Taguchi method, 25 samples out of 100 samples are selected for a parametric study where we predict the damaged zones and the maximum deflection of SPSWs under explosive loads. Then, this study uses a multiple linear regression (MLR), multiple Ln equation regression (MLnER), gene expression programming (GEP), adaptive network-based fuzzy inference (ANFIS) and an ensemble model to predict the maximum detection of SPSWs. Several statistical parameters and error terms are used to evaluate the accuracy of the different surrogate models. The results show that the cross-section in the y-direction and the plate thickness have the most significant effects on the maximum deflection of SPSWs. The results also show that the maximum deflection is related to the scaled distance, i.e. for a value of 0.383. The ensemble model performs better than all other models for predicting the maximum deflection of SPSWs under explosive loads.

Design/methodology/approach

The SPSW under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the CONWEP model for the explosive load and the Johnson-Cook model for the steel plate. Based on the Taguchi method, 25 samples out of 100 samples are selected for a parametric study where we predict the damaged zones and the maximum deflection of SPSWs under explosive loads. Then, this study uses a MLR, MLnER, GEP, ANFIS and an ensemble model to predict the maximum detection of SPSWs. Several statistical parameters and error terms are used to evaluate the accuracy of the different surrogate models. The results show that the cross-section in the y-direction and the plate thickness have the most significant effects on the maximum deflection of SPSWs. The results also show that the maximum deflection is related to the scaled distance, i.e. for a value of 0.383. The ensemble model performs better than all other models for predicting the maximum deflection of SPSWs under explosive loads.

Findings

The resistance of SPSW under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the CONWEP model for the explosive load and the Johnson-Cook model for the steel plate. Based on the Taguchi method, 25 samples out of 100 samples are selected for a parametric study where we predict the damaged zones and the maximum deflection of SPSWs under explosive loads. Then, this study uses a MLR, MLnER, GEP, ANFIS and an ensemble model to predict the maximum detection of SPSWs. Several statistical parameters and error terms are used to evaluate the accuracy of the different surrogate models. The results show that the cross-section in the y-direction and the plate thickness have the most significant effects on the maximum deflection of SPSWs. The results also show that the maximum deflection is related to the scaled distance, i.e. for a value of 0.383. The ensemble model performs better than all other models for predicting the maximum deflection of SPSWs under explosive loads.

Originality/value

The resistance of SPSW under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the CONWEP model for the explosive load and the Johnson-Cook model for the steel plate. Based on the Taguchi method, 25 samples out of 100 samples are selected for a parametric study where we predict the damaged zones and the maximum deflection of SPSWs under explosive loads. Then, this study uses a MLR, MLnER, GEP, ANFIS and an ensemble model to predict the maximum detection of SPSWs. Several statistical parameters and error terms are used to evaluate the accuracy of the different surrogate models. The results show that the cross-section in the y-direction and the plate thickness have the most significant effects on the maximum deflection of SPSWs. The results also show that the maximum deflection is related to the scaled distance, i.e. for a value of 0.383. The ensemble model performs better than all other models for predicting the maximum deflection of SPSWs under explosive loads.

Details

Engineering Computations, vol. 38 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2006

Ludovico Morais and Luís Andrade Ferreira

To provide an optimization methodology for the journal bearings of mass balancing systems, that consists in a sensibility analysis of the journal bearings design parameters in the…

Abstract

Purpose

To provide an optimization methodology for the journal bearings of mass balancing systems, that consists in a sensibility analysis of the journal bearings design parameters in the journal bearing operating parameters, as well as the comparison and selection of the journal bearing materials and the selection of the lubrication grooves suitable.

Design/methodology/approach

The methodology followed comprehends three steps. The first step is the one by one variation of the journal bearing design parameters (radial clearance, journal bearing diameter and journal bearing length) to analyse, independently, their influence on the journal bearing operating parameters (minimum film thickness, maximum pressure and power loss). The second step is the analysis and comparison of the metallic materials that can be used in the journal bearings. The third step is the selection of the lubrication groove.

Findings

Applying this methodology it is shown that increasing the radial clearance the minimum film thickness increases and the maximum pressure and the power loss decrease, increasing the journal bearing length the minimum film thickness and the power loss increase and the maximum pressure decreases, at last, increasing the journal bearing diameter the minimum film thickness, the maximum pressure and the power loss increase. The materials that should be used are the white metals (Babbitts). And the journal bearing lubrication grooves should be circumferential.

Practical implications

This method gives the user the possibility to eliminate potential failures of the journal bearings, or simply to make a sensibility study of the influence of the journal bearing design parameters in the operating ones.

Originality/value

This paper provides a simple and objective methodology to make a sensibility analysis of the influence of the journal bearing design parameters in the operating parameters, as well as select the journal bearing materials and lubrication grooves.

Details

Industrial Lubrication and Tribology, vol. 58 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2004

Alexandros Kallantzis and Sergios Lambropoulos

A scheduling method for determining the critical path in linear projects is presented, that takes into account maximum time and distance constraints in addition to the commonly…

2207

Abstract

A scheduling method for determining the critical path in linear projects is presented, that takes into account maximum time and distance constraints in addition to the commonly used minimum time and distance constraints. The maximum constraints, though often present in the specifications of a project, are not considered during the planning procedure, since no method existed to enable scheduling with them. The proposed method builds on the concept of the maximum constraints and expands on the necessary background for their implementation into the schedule. The introduced critical path algorithm allows for grouping linear activities into four categories regarding their critical status and their ability to influence project duration. The method is applied to a low‐pressure pipeline construction project and the results are presented.

Details

Engineering, Construction and Architectural Management, vol. 11 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 August 2008

M.M.A. Vermeulen and M. Wisse

Safety is an important issue when manipulators operate in an environment where humans are present, such as the agriculture industry. An intrinsically safe mechanical system…

Abstract

Purpose

Safety is an important issue when manipulators operate in an environment where humans are present, such as the agriculture industry. An intrinsically safe mechanical system guarantees human safety when electronics or controls fail. However, industry also demands a certain operating velocity. A low inertia is the most important aspect to combine safety with a useful operating velocity, because this will limit the amount of kinetic or potential energy in the system and the required actuation forces. Low‐actuation forces limit the amount of static contact pressure between manipulator and human, a requirement for intrinsic safety. Low energy means that less contact force is required to put the manipulator to a stop in collision, an additional requirement. The goal of this paper is to find the maximum industrially applicable, manipulator mass for which intrinsic mechanical safety is guaranteed.

Design/methodology/approach

Observing existing and proposed manipulators in agriculture results in a required cycle time of 0.9 s, trajectory of 0.8 m and payload of 2 kg. Three important trade‐offs applying to the manipulator are identified. The first is between maximum velocity and acceleration, using cycle time and trajectory. The second is between maximum acceleration and mass, based on a measure for pain in contact pressure. The third is between maximum velocity and mass, using a collision model and the contact pressure during collision.

Findings

Combining all three trade‐offs results in an allowable arm effective inertia of 5.1 kg. Taking payload into account and converting to a realistic mass distribution results in a total mass of 9.3 kg. Compared to existing manipulators, both mass and payload are ambitious but realistic for the future development of an intrinsically safe manipulator.

Research limitations/implications

Accuracy in positioning is not taken into account.

Originality/value

This paper combines safety criteria on maximum energy and maximum static pressure, while also taking industrial applicable operating velocity into account.

Details

Industrial Robot: An International Journal, vol. 35 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 May 2018

Masoud Kharati-koopaee and Mahmood Fallahzadeh-abarghooee

This paper aims to study the effect of corrugated skins on the aerodynamic performance of the cambered NACA 0012 airfoils at different corrugations parameters, maximum cambers…

Abstract

Purpose

This paper aims to study the effect of corrugated skins on the aerodynamic performance of the cambered NACA 0012 airfoils at different corrugations parameters, maximum cambers, Reynolds numbers and maximum camber locations.

Design/methodology/approach

In this work, numerical approach is concerned, and results are obtained based on the finite volume approach. To characterize the effect of corrugated skins, the NACA 0012-corrugated airfoil section is chosen as the base airfoil, and different cambered corrugated airfoil sections are obtained by inclusion the camber to the base airfoil. In this research, the corrugation shape is a sinusoidal wave and corrugated skins are in the aft 30 per cent of airfoil chord. To investigate the effect of corrugations on the cambered sections, the drag coefficient and averaged lift curve slope for the corrugated airfoils are compared to those of the corresponding smooth sections.

Findings

Results indicate that the effect of increase in the maximum camber and also Reynolds number on the relative zero-incidence drag coefficient is of little importance at low corrugation amplitudes, whereas at high corrugation, amplitude results in different behaviors. It is found that as the maximum camber increases, the deterioration in the relative curve slope introduced by corrugated skins is reduced, and reduction in this deterioration is significant for high corrugation amplitudes airfoils. It is shown that an increase in the maximum camber location has nearly no effect on the relative zero-incidence drag coefficient and also relative lift curve slope.

Originality/value

The outcome of the present research provides the clues for better understanding of the effect of different corrugations parameters on the aerodynamic performance of the unmanned air vehicles to have as high aerodynamic performance as possible in different mission profiles of such vehicles.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 113000