Search results

1 – 10 of over 3000
Article
Publication date: 23 November 2022

Ibrahim Karatas and Abdulkadir Budak

The study is aimed to compare the prediction success of basic machine learning and ensemble machine learning models and accordingly create novel prediction models by combining…

Abstract

Purpose

The study is aimed to compare the prediction success of basic machine learning and ensemble machine learning models and accordingly create novel prediction models by combining machine learning models to increase the prediction success in construction labor productivity prediction models.

Design/methodology/approach

Categorical and numerical data used in prediction models in many studies in the literature for the prediction of construction labor productivity were made ready for analysis by preprocessing. The Python programming language was used to develop machine learning models. As a result of many variation trials, the models were combined and the proposed novel voting and stacking meta-ensemble machine learning models were constituted. Finally, the models were compared to Target and Taylor diagram.

Findings

Meta-ensemble models have been developed for labor productivity prediction by combining machine learning models. Voting ensemble by combining et, gbm, xgboost, lightgbm, catboost and mlp models and stacking ensemble by combining et, gbm, xgboost, catboost and mlp models were created and finally the Et model as meta-learner was selected. Considering the prediction success, it has been determined that the voting and stacking meta-ensemble algorithms have higher prediction success than other machine learning algorithms. Model evaluation metrics, namely MAE, MSE, RMSE and R2, were selected to measure the prediction success. For the voting meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R2 are 0.0499, 0.0045, 0.0671 and 0.7886, respectively. For the stacking meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R2 are 0.0469, 0.0043, 0.0658 and 0.7967, respectively.

Research limitations/implications

The study shows the comparison between machine learning algorithms and created novel meta-ensemble machine learning algorithms to predict the labor productivity of construction formwork activity. The practitioners and project planners can use this model as reliable and accurate tool for predicting the labor productivity of construction formwork activity prior to construction planning.

Originality/value

The study provides insight into the application of ensemble machine learning algorithms in predicting construction labor productivity. Additionally, novel meta-ensemble algorithms have been used and proposed. Therefore, it is hoped that predicting the labor productivity of construction formwork activity with high accuracy will make a great contribution to construction project management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 15 August 2023

Doreen Nkirote Bundi

The purpose of this study is to examine the state of research into adoption of machine learning systems within the health sector, to identify themes that have been studied and…

1049

Abstract

Purpose

The purpose of this study is to examine the state of research into adoption of machine learning systems within the health sector, to identify themes that have been studied and observe the important gaps in the literature that can inform a research agenda going forward.

Design/methodology/approach

A systematic literature strategy was utilized to identify and analyze scientific papers between 2012 and 2022. A total of 28 articles were identified and reviewed.

Findings

The outcomes reveal that while advances in machine learning have the potential to improve service access and delivery, there have been sporadic growth of literature in this area which is perhaps surprising given the immense potential of machine learning within the health sector. The findings further reveal that themes such as recordkeeping, drugs development and streamlining of treatment have primarily been focused on by the majority of authors in this area.

Research limitations/implications

The search was limited to journal articles published in English, resulting in the exclusion of studies disseminated through alternative channels, such as conferences, and those published in languages other than English. Considering that scholars in developing nations may encounter less difficulty in disseminating their work through alternative channels and that numerous emerging nations employ languages other than English, it is plausible that certain research has been overlooked in the present investigation.

Originality/value

This review provides insights into future research avenues for theory, content and context on adoption of machine learning within the health sector.

Details

Digital Transformation and Society, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0761

Keywords

Article
Publication date: 11 December 2023

Chi-Un Lei, Wincy Chan and Yuyue Wang

Higher education plays an essential role in achieving the United Nations sustainable development goals (SDGs). However, there are only scattered studies on monitoring how…

Abstract

Purpose

Higher education plays an essential role in achieving the United Nations sustainable development goals (SDGs). However, there are only scattered studies on monitoring how universities promote SDGs through their curriculum. The purpose of this study is to investigate the connection of existing common core courses in a university to SDG education. In particular, this study wanted to know how common core courses can be classified by machine-learning approach according to SDGs.

Design/methodology/approach

In this report, the authors used machine learning techniques to tag the 166 common core courses in a university with SDGs and then analyzed the results based on visualizations. The training data set comes from the OSDG public community data set which the community had verified. Meanwhile, key descriptions of common core courses had been used for the classification. The study used the multinomial logistic regression algorithm for the classification. Descriptive analysis at course-level, theme-level and curriculum-level had been included to illustrate the proposed approach’s functions.

Findings

The results indicate that the machine-learning classification approach can significantly accelerate the SDG classification of courses. However, currently, it cannot replace human classification due to the complexity of the problem and the lack of relevant training data.

Research limitations/implications

The study can achieve a more accurate model training through adopting advanced machine learning algorithms (e.g. deep learning, multioutput multiclass machine learning algorithms); developing a more effective test data set by extracting more relevant information from syllabus and learning materials; expanding the training data set of SDGs that currently have insufficient records (e.g. SDG 12); and replacing the existing training data set from OSDG by authentic education-related documents (such as course syllabus) with SDG classifications. The performance of the algorithm should also be compared to other computer-based and human-based SDG classification approaches for cross-checking the results, with a systematic evaluation framework. Furthermore, the study can be analyzed by circulating results to students and understanding how they would interpret and use the results for choosing courses for studying. Furthermore, the study mainly focused on the classification of topics that are taught in courses but cannot measure the effectiveness of adopted pedagogies, assessment strategies and competency development strategies in courses. The study can also conduct analysis based on assessment tasks and rubrics of courses to see whether the assessment tasks can help students understand and take action on SDGs.

Originality/value

The proposed approach explores the possibility of using machine learning for SDG classifications in scale.

Details

International Journal of Sustainability in Higher Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1467-6370

Keywords

Article
Publication date: 27 October 2023

Pulkit Tiwari

The objective of this research work is to design a data-based solution for administering traffic organization in a smart city by using the machine learning algorithm.

Abstract

Purpose

The objective of this research work is to design a data-based solution for administering traffic organization in a smart city by using the machine learning algorithm.

Design/methodology/approach

A machine learning framework for managing traffic infrastructure and air pollution in urban centers relies on a predictive analytics model. The model makes use of transportation data to predict traffic patterns based on the information gathered from numerous sources within the city. It can be promoted for strategic planning determination. The data features volume and calendar variables, including hours of the day, week and month. These variables are leveraged to identify time series-based seasonal patterns in the data. To achieve accurate traffic volume forecasting, the long short-term memory (LSTM) method is recommended.

Findings

The study has produced a model that is appropriate for the transportation sector in the city and other innovative urban applications. The findings indicate that the implementation of smart transportation systems enhances transportation and has a positive impact on air quality. The study's results are explored and connected to practical applications in the areas of air pollution control and smart transportation.

Originality/value

The present paper has created the machine learning framework for the transportation sector of smart cities that achieves a reasonable level of accuracy. Additionally, the paper examines the effects of smart transportation on both the environment and supply chain.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 15 February 2024

Xin Huang, Ting Tang, Yu Ning Luo and Ren Wang

This study aims to examine the impact of board characteristics on firm performance while also exploring the influential mechanisms that help Chinese listed companies establish…

Abstract

Purpose

This study aims to examine the impact of board characteristics on firm performance while also exploring the influential mechanisms that help Chinese listed companies establish effective boards of directors and strengthen their corporate governance mechanisms.

Design/methodology/approach

This paper uses machine learning methods to investigate the predictive ability of the board of directors' characteristics on firm performance based on the data from Chinese A-share listed companies on the Shanghai and Shenzhen stock exchanges in China during 2008–2021. This study further analyzes board characteristics with relatively strong predictive ability and their predictive models on firm performance.

Findings

The results show that nonlinear machine learning methods are more effective than traditional linear models in analyzing the impact of board characteristics on Chinese firm performance. Among the series characteristics of the board of directors, the contribution ratio in prediction from directors compensation, director shareholding ratio, the average age of directors and directors' educational level are significant, and these characteristics have a roughly nonlinear correlation to the prediction of firm performance; the improvement of the predictive ability of board characteristics on firm performance in state-owned enterprises in China performs better than that in private enterprises.

Practical implications

The findings of this study provide valuable suggestions for enriching the theory of board governance, strengthening board construction and optimizing the effectiveness of board governance. Furthermore, these impacts can serve as a valuable reference for board construction and selection, aiding in the rational selection of boards to establish an efficient and high-performing board of directors.

Originality/value

The study findings unequivocally demonstrate the superiority of nonlinear machine learning approaches over traditional linear models in examining the relationship between board characteristics and firm performance in China. Within the suite of board characteristics, director compensation, shareholding ratio, average age and educational level are particularly noteworthy, consistently demonstrating strong, nonlinear associations with firm performance. Within the suite of board characteristics, director compensation, shareholding ratio, average age and educational level are particularly noteworthy, consistently demonstrating strong, nonlinear associations with firm performance. The study reveals that the predictive performance of board attributes is generally more robust for state-owned enterprises in China in comparison to their counterparts in the private sector.

Details

Chinese Management Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-614X

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2092

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 20 February 2024

Li Chen, Dirk Ifenthaler, Jane Yin-Kim Yau and Wenting Sun

The study aims to identify the status quo of artificial intelligence in entrepreneurship education with a view to identifying potential research gaps, especially in the adoption…

1129

Abstract

Purpose

The study aims to identify the status quo of artificial intelligence in entrepreneurship education with a view to identifying potential research gaps, especially in the adoption of certain intelligent technologies and pedagogical designs applied in this domain.

Design/methodology/approach

A scoping review was conducted using six inclusive and exclusive criteria agreed upon by the author team. The collected studies, which focused on the adoption of AI in entrepreneurship education, were analysed by the team with regards to various aspects including the definition of intelligent technology, research question, educational purpose, research method, sample size, research quality and publication. The results of this analysis were presented in tables and figures.

Findings

Educators introduced big data and algorithms of machine learning in entrepreneurship education. Big data analytics use multimodal data to improve the effectiveness of entrepreneurship education and spot entrepreneurial opportunities. Entrepreneurial analytics analysis entrepreneurial projects with low costs and high effectiveness. Machine learning releases educators’ burdens and improves the accuracy of the assessment. However, AI in entrepreneurship education needs more sophisticated pedagogical designs in diagnosis, prediction, intervention, prevention and recommendation, combined with specific entrepreneurial learning content and entrepreneurial procedure, obeying entrepreneurial pedagogy.

Originality/value

This study holds significant implications as it can shift the focus of entrepreneurs and educators towards the educational potential of artificial intelligence, prompting them to consider the ways in which it can be used effectively. By providing valuable insights, the study can stimulate further research and exploration, potentially opening up new avenues for the application of artificial intelligence in entrepreneurship education.

Details

Education + Training, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0040-0912

Keywords

Article
Publication date: 2 February 2024

Sara Ebrahim Mohsen, Allam Hamdan and Haneen Mohammad Shoaib

Integrating artificial intelligence (AI) into various industries, including the financial sector, has transformed them. This paper aims to examine the influence of integrating AI…

Abstract

Purpose

Integrating artificial intelligence (AI) into various industries, including the financial sector, has transformed them. This paper aims to examine the influence of integrating AI, including machine learning, process automation, predictive analytics and chatbots, on financial institutions and explores its various aspects and areas. The study aims to determine the impact of AI integration on financial services, products and customer experience.

Design/methodology/approach

The research study uses quantitative and qualitative methods, as well as secondary data analysis. It investigates four AI subfields: machine learning, process automation, predictive analytics and chatbots.

Findings

The research findings indicate that integrating AI, particularly in machine learning and chatbot subfields, holds promise and high strategic potential for financial institutions. These subfields can contribute significantly to enhancing financial services and customer experience. However, the significance of predictive analytics integration and process automation is relatively lower. Although these subfields retain their usefulness, they might necessitate alternative workflows and tools that incorporate human involvement. Overall, AI integration minimizes human interactions and errors in financial institutions.

Originality/value

The research study contributes original insights by exploring the specific subfields of AI within the financial industry and assessing their strategic significance. It provides recommendations for financial institutions to adopt AI integration partially in multiple phases, measure and evaluate the impact of the transformation and structure internal units and expertise to strategize adoption and change.

Details

Journal of Financial Reporting and Accounting, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-2517

Keywords

Article
Publication date: 19 December 2023

Salima Hamouche, Norffadhillah Rofa and Annick Parent-Lamarche

Artificial intelligence (AI) is a significant game changer in human resource development (HRD). The launch of ChatGPT has accelerated its progress and amplified its impact on…

Abstract

Purpose

Artificial intelligence (AI) is a significant game changer in human resource development (HRD). The launch of ChatGPT has accelerated its progress and amplified its impact on organizations and employees. This study aims to review and examine literature on AI in HRD, using a bibliometric approach.

Design/methodology/approach

This study is a bibliometric review. Scopus was used to identify studies in the field. In total, 236 papers published in the past 10 years were examined using the VOSviewer program.

Findings

The obtained results showed that most cited documents and authors are mainly from computer sciences, emphasizing machine learning over human learning. While it was expected that HRD authors and studies would have a more substantial presence, the lesser prominence suggests several interesting avenues for explorations.

Practical implications

This study provides insights and recommendations for researchers, managers, HRD practitioners and policymakers. Prioritizing the development of both humans and machines becomes crucial, as an exclusive focus on machines may pose a risk to the sustainability of employees' skills and long-term career prospects.

Originality/value

There is a dearth of bibliometric studies examining AI in HRD. Hence, this study proposes a relatively unexplored approach to examine this topic. It provides a visual and structured overview of this topic. Also, it highlights areas of research concentration and areas that are overlooked. Shedding light on the presence of more research originating from computer sciences and focusing on machine learning over human learning represent an important contribution of this study, which may foster interdisciplinary collaboration with experts from diverse fields, broadening the scope of research on technologies and learning in workplaces.

Details

European Journal of Training and Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-9012

Keywords

Book part
Publication date: 25 October 2023

Md Aminul Islam and Md Abu Sufian

This research navigates the confluence of data analytics, machine learning, and artificial intelligence to revolutionize the management of urban services in smart cities. The…

Abstract

This research navigates the confluence of data analytics, machine learning, and artificial intelligence to revolutionize the management of urban services in smart cities. The study thoroughly investigated with advanced tools to scrutinize key performance indicators integral to the functioning of smart cities, thereby enhancing leadership and decision-making strategies. Our work involves the implementation of various machine learning models such as Logistic Regression, Support Vector Machine, Decision Tree, Naive Bayes, and Artificial Neural Networks (ANN), to the data. Notably, the Support Vector Machine and Bernoulli Naive Bayes models exhibit robust performance with an accuracy rate of 70% precision score. In particular, the study underscores the employment of an ANN model on our existing dataset, optimized using the Adam optimizer. Although the model yields an overall accuracy of 61% and a precision score of 58%, implying correct predictions for the positive class 58% of the time, a comprehensive performance assessment using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) metrics was necessary. This evaluation results in a score of 0.475 at a threshold of 0.5, indicating that there's room for model enhancement. These models and their performance metrics serve as a key cog in our data analytics pipeline, providing decision-makers and city leaders with actionable insights that can steer urban service management decisions. Through real-time data availability and intuitive visualization dashboards, these leaders can promptly comprehend the current state of their services, pinpoint areas requiring improvement, and make informed decisions to bolster these services. This research illuminates the potential for data analytics, machine learning, and AI to significantly upgrade urban service management in smart cities, fostering sustainable and livable communities. Moreover, our findings contribute valuable knowledge to other cities aiming to adopt similar strategies, thus aiding the continued development of smart cities globally.

Details

Technology and Talent Strategies for Sustainable Smart Cities
Type: Book
ISBN: 978-1-83753-023-6

Keywords

1 – 10 of over 3000