Search results

1 – 10 of 281
Article
Publication date: 17 June 2022

Adumbabu I. and K. Selvakumar

Localization of the nodes is crucial for gaining access of different nodes which would provision in extreme areas where networks are unreachable. The feature of localization of…

Abstract

Purpose

Localization of the nodes is crucial for gaining access of different nodes which would provision in extreme areas where networks are unreachable. The feature of localization of nodes has become a significant study where multiple features on distance model are implicated on predictive and heuristic model for each set of localization parameters that govern the design on energy minimization with proposed adaptive threshold gradient feature (ATGF) model. A received signal strength indicator (RSSI) model with node estimated features is implicated with localization problem and enhanced with hybrid cumulative approach (HCA) algorithm for node optimizations with distance predicting.

Design/methodology/approach

Using a theoretical or empirical signal propagation model, the RSSI (known transmitting power) is converted to distance, the received power (measured at the receiving node) is converted to distance and the distance is converted to RSSI (known receiving power). As a result, the approximate distance between the transceiver node and the receiver may be determined by measuring the intensity of the received signal. After acquiring information on the distance between the anchor node and the unknown node, the location of the unknown node may be determined using either the trilateral technique or the maximum probability estimate approach, depending on the circumstances using federated learning.

Findings

Improvisation of localization for wireless sensor network has become one of the prime design features for estimating the different conditional changes externally and internally. One such feature of improvement is observed in this paper, via HCA where each feature of localization is depicted with machine learning algorithms imparting the energy reduction problem for each newer localized nodes in Section 5. All affected parametric features on energy levels and localization problem for newer and extinct nodes are implicated with hybrid cumulative approach as in Section 4. The proposed algorithm (HCA with AGTF) has implicated with significant change in energy levels of nodes which are generated newly and which are non-active for a stipulated time which are mentioned and tabulated in figures and tables in Section 6.

Originality/value

Localization of the nodes is crucial for gaining access of different nodes which would provision in extreme areas where networks are unreachable. The feature of localization of nodes has become a significant study where multiple features on distance model are implicated on predictive and heuristic model for each set of localization parameters that govern the design on energy minimization with proposed ATGF model. An RSSI model with node estimated features is implicated with localization problem and enhanced with HCA algorithm for node optimizations with distance predicting.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 8 April 2024

Matthew Peebles, Shen Hin Lim, Mike Duke, Benjamin Mcguinness and Chi Kit Au

Time of flight (ToF) imaging is a promising emerging technology for the purposes of crop identification. This paper aim to presents localization system for identifying and…

Abstract

Purpose

Time of flight (ToF) imaging is a promising emerging technology for the purposes of crop identification. This paper aim to presents localization system for identifying and localizing asparagus in the field based on point clouds from ToF imaging. Since the semantics are not included in the point cloud, it contains the geometric information of other objects such as stones and weeds other than asparagus spears. An approach is required for extracting the spear information so that a robotic system can be used for harvesting.

Design/methodology/approach

A real-time convolutional neural network (CNN)-based method is used for filtering the point cloud generated by a ToF camera, allowing subsequent processing methods to operate over smaller and more information-dense data sets, resulting in reduced processing time. The segmented point cloud can then be split into clusters of points representing each individual spear. Geometric filters are developed to eliminate the non-asparagus points in each cluster so that each spear can be modelled and localized. The spear information can then be used for harvesting decisions.

Findings

The localization system is integrated into a robotic harvesting prototype system. Several field trials have been conducted with satisfactory performance. The identification of a spear from the point cloud is the key to successful localization. Segmentation and clustering points into individual spears are two major failures for future improvements.

Originality/value

Most crop localizations in agricultural robotic applications using ToF imaging technology are implemented in a very controlled environment, such as a greenhouse. The target crop and the robotic system are stationary during the localization process. The novel proposed method for asparagus localization has been tested in outdoor farms and integrated with a robotic harvesting platform. Asparagus detection and localization are achieved in real time on a continuously moving robotic platform in a cluttered and unstructured environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2024

Jianjun Yao and Yingzhao Li

Weak repeatability is observed in handcrafted keypoints, leading to tracking failures in visual simultaneous localization and mapping (SLAM) systems under challenging scenarios…

Abstract

Purpose

Weak repeatability is observed in handcrafted keypoints, leading to tracking failures in visual simultaneous localization and mapping (SLAM) systems under challenging scenarios such as illumination change, rapid rotation and large angle of view variation. In contrast, learning-based keypoints exhibit higher repetition but entail considerable computational costs. This paper proposes an innovative algorithm for keypoint extraction, aiming to strike an equilibrium between precision and efficiency. This paper aims to attain accurate, robust and versatile visual localization in scenes of formidable complexity.

Design/methodology/approach

SiLK-SLAM initially refines the cutting-edge learning-based extractor, SiLK, and introduces an innovative postprocessing algorithm for keypoint homogenization and operational efficiency. Furthermore, SiLK-SLAM devises a reliable relocalization strategy called PCPnP, leveraging progressive and consistent sampling, thereby bolstering its robustness.

Findings

Empirical evaluations conducted on TUM, KITTI and EuRoC data sets substantiate SiLK-SLAM’s superior localization accuracy compared to ORB-SLAM3 and other methods. Compared to ORB-SLAM3, SiLK-SLAM demonstrates an enhancement in localization accuracy even by 70.99%, 87.20% and 85.27% across the three data sets. The relocalization experiments demonstrate SiLK-SLAM’s capability in producing precise and repeatable keypoints, showcasing its robustness in challenging environments.

Originality/value

The SiLK-SLAM achieves exceedingly elevated localization accuracy and resilience in formidable scenarios, holding paramount importance in enhancing the autonomy of robots navigating intricate environments. Code is available at https://github.com/Pepper-FlavoredChewingGum/SiLK-SLAM.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 June 2023

Amna Salman and Wasiq Ahmad

The Operations and Maintenance (O&M) cost of a facility is typically 60–85% of the total life cycle cost of a building whereas its design and construction cost accounts for only…

Abstract

Purpose

The Operations and Maintenance (O&M) cost of a facility is typically 60–85% of the total life cycle cost of a building whereas its design and construction cost accounts for only 5–10%. Therefore, enhancing and optimizing the O&M of a facility is a crucial issue. In addition, with the increasing complexities in a building's operating systems, more technologically advanced solutions are required for proactively maintaining a facility. Thereby, a tool is needed which can optimize and reduce the cost of facility maintenance. One of the solutions is Augmented or Mixed Reality (AR/MR) technologies which can reduce repair time, training time and streamline inspections. Therefore, the purpose of this study is to establish contextual knowledge of AR/MR application in facilities operation and maintenance and present an implementation framework through the analysis and classification of articles published between 2015 and 2022.

Design/methodology/approach

To effectively understand all AR/MR applications in facilities management (FM), a systematic literature review is performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was followed for searching and describing the search strategies. Keywords were identified through the concept mapping technique. The Scopus database and Google Scholar were employed to find relevant articles, books and conference papers. A thorough bibliometric analysis was conducted using VOS Viewer and subsequently, a thematic analysis was performed for the selected publications.

Findings

The use of AR/MR within facilities O&M could be categorized into five different application areas: (1) visualization; (2) maintenance; (3) indoor localization and positioning; (4) information management and (5) indoor environment. After a thematic analysis of the literature, it was found that maintenance and indoor localization were the most frequently used research application domains. The chronological evolution of AR/MR in FM is also presented along with the origin of publications, which showed that the technology is out of its infancy stage and is ready for implementation. However, literature showed many challenges hindering this goal, that is (1) reluctance of the organizational leadership to bear the cost of hardware and trainings for the employees, (2) Lack of BIM use in FM and (3) system lagging, crashing and unable to register the real environment. A preliminary framework is presented to overcome these challenges.

Originality/value

This study accommodates a variety of application domains within facilities O&M. The publications were systematically selected from the existing literature and then reviewed to exhibit various AR/MR applications to support FM. There have been no literature reviews that focus on AR and/or MR in the FM and this paper fills the gap by not only presenting its applications but also developing an implementation framework.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 30 August 2022

Devika E. and Saravanan A.

Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems…

51

Abstract

Purpose

Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems required computationally efficient calibration techniques. This paper aims to improve localization accuracy by identifying obstacles in the optimization process and network scenarios.

Design/methodology/approach

The proposed method is used to incorporate distance estimation between nodes and packet transmission hop counts. This estimation is used in the proposed support vector machine (SVM) to find the network path using a time difference of arrival (TDoA)-based SVM. However, if the data set is noisy, SVM is prone to poor optimization, which leads to overlapping of target classes and the pathways through TDoA. The enhanced gray wolf optimization (EGWO) technique is introduced to eliminate overlapping target classes in the SVM.

Findings

The performance and efficacy of the model using existing TDoA methodologies are analyzed. The simulation results show that the proposed TDoA-EGWO achieves a higher rate of detection efficiency of 98% and control overhead of 97.8% and a better packet delivery ratio than other traditional methods.

Originality/value

The proposed method is successful in detecting the unknown position of the sensor node with a detection rate greater than that of other methods.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 November 2023

Raffaella Montera, Giulia Nevi, Nicola Cucari and Salvatore Esposito De Falco

This paper aims to examine the COVID-19 pandemic’s impacts on the regional progression toward the Sustainable Development Goals (SDGs) through the lens of the adoption of 2030…

Abstract

Purpose

This paper aims to examine the COVID-19 pandemic’s impacts on the regional progression toward the Sustainable Development Goals (SDGs) through the lens of the adoption of 2030 Agenda by firms from different Italian regions.

Design/methodology/approach

Mixed methods were adopted. First, a content analysis was performed on 330 nonfinancial declarations released in the 2019–2021 period by a sample of 110 Italian listed companies from different regional macroareas. Second, regression analyses were run to test the impact of regional localization of businesses on SDGs adoption over pre-/during/post-COVID era.

Findings

The regional localization of businesses does not affect the SDGs adoption in the pre-COVID-19 era because Italian firms mainly address social goals. Instead, SDGs adoption is affected by regional localization of businesses both during and post-COVID-19 age, when Northern firms prioritize economic and social goals, whereas Southern firms shift from social to environmental goals.

Originality/value

This study fills the need of considering the subnational specificities in literature on sustainable development by capturing connections between firms, belonging territory, SDGs and COVID-19 crisis.

Details

Corporate Governance: The International Journal of Business in Society, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-0701

Keywords

Article
Publication date: 6 November 2023

Mohammad Alqahtani, Desmond Tutu Ayentimi and Kantha Dayaram

Saudi Arabia (SA) is amongst the few countries with a significant foreign workforce who are employed in the higher education sector. More specifically, 39% of SA's academic staff…

Abstract

Purpose

Saudi Arabia (SA) is amongst the few countries with a significant foreign workforce who are employed in the higher education sector. More specifically, 39% of SA's academic staff members are foreign nationals and 63% of that proportion occupy professorial positions. Drawing from a workforce localisation perspective, the study was framed as an exploration of equity and social justice amongst Saudi nationals and foreign nationals in a university work setting. The authors employ the lens of how human resource development (HRD) opportunities are administered.

Design/methodology/approach

Following the choice of an exploratory qualitative study, the authors employed a multi-case study approach where each of the six universities represented a unit of analysis.

Findings

The authors found that nationality differences influenced access to HRD opportunities. These differences are reinforced by practices associated with procedural processes, managerial discretion and selective restrictions in accessing HRD opportunities.

Social implications

The findings have both practical and social implications, specifically for the SA government's strategic vision of developing local human capabilities.

Originality/value

The workforce localisation agenda within the higher education sector has both a compounding effect on local human capital and supports SA's 2030 Vision and human capital target. Nonetheless, perceived inequity and injustice in accessing HRD opportunities by foreign nationals potentially undermine morale, academic quality standards and research performance, which impacts the development of future human capital and the ‘Saudization’ goals.

Details

Personnel Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0048-3486

Keywords

Article
Publication date: 15 February 2024

Zhongwei Sun, Xuchuang Zhang and Xiaofang Wu

This study investigates the mediating role of wage and workforce adjustments, along with the moderating influence of collective bargaining system and employees’ localization, in…

Abstract

Purpose

This study investigates the mediating role of wage and workforce adjustments, along with the moderating influence of collective bargaining system and employees’ localization, in elucidating the relationship between the COVID-19 shock and workplace employee relations (ER) tension.

Design/methodology/approach

Survey data from 1,483 enterprises across 21 prefectural cities in China’s Guangdong Province are collected. The hypotheses are tested by logistic regression.

Findings

The study reveals a positive correlation between the COVID-19 shock and workplace ER tension across crisis-hit enterprises, irrespective of their size or industrial sector. Wage reduction and mass layoffs emerge as significant mediators, while the collective bargaining system (CBS) and employees’ localization act as moderators.

Research limitations/implications

The measurement of ER is limited in a single-item scale. Representation of China is also limited since the study exclusively focuses on Guangdong province. The study offers some contributions that firm-level data reveal the pathway through which COVID-19 creates ER tension.

Practical implications

On the one hand, the authors recommend the establishment of an effective communication system between employers and employees. On the other hand, managers should consider the role of informal institutions. Furthermore, the authors suggest implementing tailored strategies at the enterprise level.

Social implications

Intense external shocks result in widespread layoffs and increased wage reductions within workplaces, and under such circumstances, formal or informal institutions may be insufficient to alleviate ER tension. In this case, the state authorities – including governments and other public agencies or bodies – are necessary to intervene in to organize tripartite dialogue.

Originality/value

While numerous emerging studies on COVID-19 explore how different countries manage industrial relations tension at the national level, few focus on ER at workplace level, particularly in developing countries. Understanding how workplace ER evolve during external shocks and identifying institutional measures to mitigate their negative impact is crucial for future crisis management.

Details

Employee Relations: The International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0142-5455

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 281