Search results

1 – 10 of 221
Article
Publication date: 13 February 2024

Aleena Swetapadma, Tishya Manna and Maryam Samami

A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the…

Abstract

Purpose

A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the atrial blood pressure, photoplethysmogram (PLETH), electrocardiogram (ECG) and respiratory (RESP) signals are considered as input signals.

Design/methodology/approach

Three machine learning approaches feed-forward artificial neural network (ANN), ensemble learning method and k-nearest neighbors searching methods are used to detect the false alarm. The proposed method has been implemented using Arduino and MATLAB/SIMULINK for real-time ICU-arrhythmia patients' monitoring data.

Findings

The proposed method detects the false alarm with an accuracy of 99.4 per cent during asystole, 100 per cent during ventricular flutter, 98.5 per cent during ventricular tachycardia, 99.6 per cent during bradycardia and 100 per cent during tachycardia. The proposed framework is adaptive in many scenarios, easy to implement, computationally friendly and highly accurate and robust with overfitting issue.

Originality/value

As ECG signals consisting with PQRST wave, any deviation from the normal pattern may signify some alarming conditions. These deviations can be utilized as input to classifiers for the detection of false alarms; hence, there is no need for other feature extraction techniques. Feed-forward ANN with the Lavenberg–Marquardt algorithm has shown higher rate of convergence than other neural network algorithms which helps provide better accuracy with no overfitting.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 31 August 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault…

Abstract

Purpose

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault Ground Motions (NFGMs), and thus forecasting the dynamic seismic response of structures, using conventional techniques, under such intense ground motions has remained a challenge.

Design/methodology/approach

The present study utilizes a 2D finite element model of an RC structure subjected to near-fault pulse-like ground motions with a focus on the storey drift ratio (SDR) as the key demand parameter. Five machine learning classifiers (MLCs), namely decision tree, k-nearest neighbor, random forest, support vector machine and Naïve Bayes classifier , were evaluated to classify the damage states of the RC structure.

Findings

The results such as confusion matrix, accuracy and mean square error indicate that the Naïve Bayes classifier model outperforms other MLCs with 80.0% accuracy. Furthermore, three MLC models with accuracy greater than 75% were trained using a voting classifier to enhance the performance score of the models. Finally, a sensitivity analysis was performed to evaluate the model's resilience and dependability.

Originality/value

The objective of the current study is to predict the nonlinear storey drift demand for low-rise RC structures using machine learning techniques, instead of labor-intensive nonlinear dynamic analysis.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 March 2023

Pratitis Nandiasoka Annisawati and Siskarossa Ika Oktora

The aims of this research include (1) to identify the scores of reading literacy in 34 provinces and (2) to determine the impact of ICT literacy with other variables on reading…

Abstract

Purpose

The aims of this research include (1) to identify the scores of reading literacy in 34 provinces and (2) to determine the impact of ICT literacy with other variables on reading literacy in Indonesia.

Design/methodology/approach

Thematic maps and Spatial Autoregressive Regression were applied to 2019 AKSI Survey data.

Findings

The results showed that only D.I. Yogyakarta, DKI Jakarta and Kepulauan Riau have a high percentage of reading literacy scores in the excellent category. The ICT literacy and teachers' competency scores significantly affect the percentage of reading literacy. Meanwhile, the percentage of lack of learning materials and GRDP per capita has no significant effect.

Originality/value

Previously, the national exam has been used to determine the quality of education in Indonesia, but it is ineffective because it only measures cognitive aspects. In 2015, the Ministry of Education initiated the AKSI survey, which measures cognitive (reading, math and science literacy) and non-cognitive aspects, as an effort to improve the quality of education in Indonesia. Some literature states that reading literacy is the most basic indicator for determining the quality of education, but in Indonesia, it is the lowest achievement. To improve reading literacy scores, the government has to utilize technological advances through School Digitization. However, this should be supported by the ICT literacy of students. Presently, there is no study to evaluate the impact of ICT literacy on reading literacy, which is also affected by regional value differences.

Details

Journal of Applied Research in Higher Education, vol. 16 no. 1
Type: Research Article
ISSN: 2050-7003

Keywords

Open Access
Article
Publication date: 21 June 2023

Sudhaman Parthasarathy and S.T. Padmapriya

Algorithm bias refers to repetitive computer program errors that give some users more weight than others. The aim of this article is to provide a deeper insight of algorithm bias…

Abstract

Purpose

Algorithm bias refers to repetitive computer program errors that give some users more weight than others. The aim of this article is to provide a deeper insight of algorithm bias in AI-enabled ERP software customization. Although algorithmic bias in machine learning models has uneven, unfair and unjust impacts, research on it is mostly anecdotal and scattered.

Design/methodology/approach

As guided by the previous research (Akter et al., 2022), this study presents the possible design bias (model, data and method) one may experience with enterprise resource planning (ERP) software customization algorithm. This study then presents the artificial intelligence (AI) version of ERP customization algorithm using k-nearest neighbours algorithm.

Findings

This study illustrates the possible bias when the prioritized requirements customization estimation (PRCE) algorithm available in the ERP literature is executed without any AI. Then, the authors present their newly developed AI version of the PRCE algorithm that uses ML techniques. The authors then discuss its adjoining algorithmic bias with an illustration. Further, the authors also draw a roadmap for managing algorithmic bias during ERP customization in practice.

Originality/value

To the best of the authors’ knowledge, no prior research has attempted to understand the algorithmic bias that occurs during the execution of the ERP customization algorithm (with or without AI).

Details

Journal of Ethics in Entrepreneurship and Technology, vol. 3 no. 2
Type: Research Article
ISSN: 2633-7436

Keywords

Article
Publication date: 28 February 2024

Magdalena Saldana-Perez, Giovanni Guzmán, Carolina Palma-Preciado, Amadeo Argüelles-Cruz and Marco Moreno-Ibarra

Climate change is a problem that concerns all of us. Despite the information produced by organizations such as the Expert Team on Climate Change Detection and Indices and the…

Abstract

Purpose

Climate change is a problem that concerns all of us. Despite the information produced by organizations such as the Expert Team on Climate Change Detection and Indices and the United Nations, only a few cities have been planned taking into account the climate changes indices. This paper aims to study climatic variations, how climate conditions might change in the future and how these changes will affect the activities and living conditions in cities, specifically focusing on Mexico city.

Design/methodology/approach

In this approach, two distinct machine learning regression models, k-Nearest Neighbors and Support Vector Regression, were used to predict variations in climate change indices within select urban areas of Mexico city. The calculated indices are based on maximum, minimum and average temperature data collected from the National Water Commission in Mexico and the Scientific Research Center of Ensenada. The methodology involves pre-processing temperature data to create a training data set for regression algorithms. It then computes predictions for each temperature parameter and ultimately assesses the performance of these algorithms based on precision metrics scores.

Findings

This paper combines a geospatial perspective with computational tools and machine learning algorithms. Among the two regression algorithms used, it was observed that k-Nearest Neighbors produced superior results, achieving an R2 score of 0.99, in contrast to Support Vector Regression, which yielded an R2 score of 0.74.

Originality/value

The full potential of machine learning algorithms has not been fully harnessed for predicting climate indices. This paper also identifies the strengths and weaknesses of each algorithm and how the generated estimations can then be considered in the decision-making process.

Details

Transforming Government: People, Process and Policy, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6166

Keywords

Article
Publication date: 5 December 2023

Licai Lei and Shiyi Hu

The online health community's success depends on doctors' active participation, so it is essential to understand the factors that affect doctors' knowledge contribution behavior…

Abstract

Purpose

The online health community's success depends on doctors' active participation, so it is essential to understand the factors that affect doctors' knowledge contribution behavior in the online health communities. From the perspective of peer effect, this paper discusses the influence of focal doctors' peers on focal doctors' knowledge contribution behavior and the mechanism behind it. This paper aims to solve these problems.

Design/methodology/approach

Empirical data of 1,938 doctors were collected from a Chinese online health community, and propensity score matching and ordinary least squares were employed to verify the proposed theoretical model.

Findings

The results show that the presence of focal doctors' peers in online health communities has a positive effect on the knowledge contribution behavior of focal doctors, and the economic returns and social returns of focal doctors' peers have a significant mediating effect.

Originality/value

This paper discusses focal doctors' knowledge contribution behavior from the perspective of peer effect. It enhances the understanding of focal doctors' behavior in the online health communities by exploring the mediating role of their peers' economic and social returns. The results of this paper extend the research in the field of peer effect and online health and provide management implications and suggestions for online health platforms and doctors.

Details

Aslib Journal of Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 22 March 2024

Shahin Alipour Bonab, Alireza Sadeghi and Mohammad Yazdani-Asrami

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are…

Abstract

Purpose

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are used to dampen the electric field imposed on the insulator. The purpose of this study is to present a fast and intelligent surrogate model for determination of the electric field imposed on the surface of a 120 kV composite insulator, in presence of the Corona ring.

Design/methodology/approach

Usually, the structural design parameters of the Corona ring are selected through an optimization procedure combined with some numerical simulations such as finite element method (FEM). These methods are slow and computationally expensive and thus, extremely reducing the speed of optimization problems. In this paper, a novel surrogate model was proposed that could calculate the maximum electric field imposed on a ceramic insulator in a 120 kV line. The surrogate model was created based on the different scenarios of height, radius and inner radius of the Corona ring, as the inputs of the model, while the maximum electric field on the body of the insulator was considered as the output.

Findings

The proposed model was based on artificial intelligence techniques that have high accuracy and low computational time. Three methods were used here to develop the AI-based surrogate model, namely, Cascade forward neural network (CFNN), support vector regression and K-nearest neighbors regression. The results indicated that the CFNN has the highest accuracy among these methods with 99.81% R-squared and only 0.045468 root mean squared error while the testing time is less than 10 ms.

Originality/value

To the best of the authors’ knowledge, for the first time, a surrogate method is proposed for the prediction of the maximum electric field imposed on the high voltage insulators in the presence Corona ring which is faster than any conventional finite element method.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 15 May 2023

Birol Yıldız and Şafak Ağdeniz

Purpose: The main aim of the study is to provide a tool for non-financial information in decision-making. We analysed the non-financial data in the annual reports in order to show…

Abstract

Purpose: The main aim of the study is to provide a tool for non-financial information in decision-making. We analysed the non-financial data in the annual reports in order to show the usage of this information in financial decision processes.

Need for the Study: Main financial reports such as balance sheets and income statements can be analysed by statistical methods. However, an expanded financial reporting framework needs new analysing methods due to unstructured and big data. The study offers a solution to the analysis problem that comes with non-financial reporting, which is an essential communication tool in corporate reporting.

Methodology: Text mining analysis of annual reports is conducted using software named R. To simplify the problem, we try to predict the companies’ corporate governance qualifications using text mining. K Nearest Neighbor, Naive Bayes and Decision Tree machine learning algorithms were used.

Findings: Our analysis illustrates that K Nearest Neighbor has classified the highest number of correct classifications by 85%, compared to 50% for the random walk. The empirical evidence suggests that text mining can be used by all stakeholders as a financial analysis method.

Practical Implications: Combining financial statement analyses with financial reporting analyses will decrease the information asymmetry between the company and stakeholders. So stakeholders can make more accurate decisions. Analysis of non-financial data with text mining will provide a decisive competitive advantage, especially for investors to make the right decisions. This method will lead to allocating scarce resources more effectively. Another contribution of the study is that stakeholders can predict the corporate governance qualification of the company from the annual reports even if it does not include in the Corporate Governance Index (CGI).

Details

Contemporary Studies of Risks in Emerging Technology, Part B
Type: Book
ISBN: 978-1-80455-567-5

Keywords

Article
Publication date: 12 October 2023

Xiaoyu Liu, Feng Xu, Zhipeng Zhang and Kaiyu Sun

Fall accidents can cause casualties and economic losses in the construction industry. Fall portents, such as loss of balance (LOB) and sudden sways, can result in fatal, nonfatal…

Abstract

Purpose

Fall accidents can cause casualties and economic losses in the construction industry. Fall portents, such as loss of balance (LOB) and sudden sways, can result in fatal, nonfatal or attempted fall accidents. All of them are worthy of studying to take measures to prevent future accidents. Detecting fall portents can proactively and comprehensively help managers assess the risk to workers as well as in the construction environment and further prevent fall accidents.

Design/methodology/approach

This study focused on the postures of workers and aimed to directly detect fall portents using a computer vision (CV)-based noncontact approach. Firstly, a joint coordinate matrix generated from a three-dimensional pose estimation model is employed, and then the matrix is preprocessed by principal component analysis, K-means and pre-experiments. Finally, a modified fusion K-nearest neighbor-based machine learning model is built to fuse information from the x, y and z axes and output the worker's pose status into three stages.

Findings

The proposed model can output the worker's pose status into three stages (steady–unsteady–fallen) and provide corresponding confidence probabilities for each category. Experiments conducted to evaluate the approach show that the model accuracy reaches 85.02% with threshold-based postprocessing. The proposed fall-portent detection approach can extract the fall risk of workers in the both pre- and post-event phases based on noncontact approach.

Research limitations/implications

First, three-dimensional (3D) pose estimation needs sufficient information, which means it may not perform well when applied in complicated environments or when the shooting distance is extremely large. Second, solely focusing on fall-related factors may not be comprehensive enough. Future studies can incorporate the results of this research as an indicator into the risk assessment system to achieve a more comprehensive and accurate evaluation of worker and site risk.

Practical implications

The proposed machine learning model determines whether the worker is in a status of steady, unsteady or fallen using a CV-based approach. From the perspective of construction management, when detecting fall-related actions on construction sites, the noncontact approach based on CV has irreplaceable advantages of no interruption to workers and low cost. It can make use of the surveillance cameras on construction sites to recognize both preceding events and happened accidents. The detection of fall portents can help worker risk assessment and safety management.

Originality/value

Existing studies using sensor-based approaches are high-cost and invasive for construction workers, and others using CV-based approaches either oversimplify by binary classification of the non-entire fall process or indirectly achieve fall-portent detection. Instead, this study aims to detect fall portents directly by worker's posture and divide the entire fall process into three stages using a CV-based noncontact approach. It can help managers carry out more comprehensive risk assessment and develop preventive measures.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 May 2023

Karandeep Kaur and Harsh Kumar Verma

Ubiquitous health-care monitoring systems can provide continuous surveillance to a person using various sensors, including wearables and implantable and fabric-woven sensors. By…

Abstract

Purpose

Ubiquitous health-care monitoring systems can provide continuous surveillance to a person using various sensors, including wearables and implantable and fabric-woven sensors. By assessing the state of many physiological characteristics of the patient’s body, continuous monitoring can assist in preparing for the impending emergency. To address this issue, this study aims to propose a health-care system that integrates the treatment of the impending heart, stress and alcohol emergencies. For this purpose, this study uses readings from sensors used for electrocardiography, heart rate, respiration rate, blood alcohol content percentage and blood pressure of a patient’s body.

Design/methodology/approach

For heart status, stress level and alcohol detection, the parametric values obtained from these sensors are preprocessed and further divided into four, five and six phases, respectively. A final integrated emergency stage is derived from the stages that were interpreted to examine at a person’s state of emergency. A thorough analysis of the proposed model is carried out using four classification techniques, including decision trees, support vector machines, k nearest neighbors and ensemble classifiers. For all of the aforementioned detections, four metrics are used to evaluate performance: classification accuracy, precision, recall and fmeasure.

Findings

Eventually, results are validated against the existing health-care systems. The empirical results received reveal that the proposed model outperforms the existing health-care models in the context of metrics above for different detections taken into consideration.

Originality/value

This study proposes a health-care system capable of performing data processing using wearable sensors. It is of great importance for real-time systems. This study assures the originality of the proposed system.

1 – 10 of 221