Search results

1 – 10 of 24
Content available
Article
Publication date: 22 May 2009

154

Abstract

Details

Pigment & Resin Technology, vol. 38 no. 3
Type: Research Article
ISSN: 0369-9420

Open Access
Article
Publication date: 23 November 2021

Hakan Göcerler, Simon Medina, Michael Adler, Josef Brenner, Andreas Tadler, Michael Nagl and Christine Hohenadl

Dry eye syndrome is one of the most common reasons for eye-related discomfort which, without treatment, in some cases may even lead to corneal damage. Blinking, baseline and…

Abstract

Purpose

Dry eye syndrome is one of the most common reasons for eye-related discomfort which, without treatment, in some cases may even lead to corneal damage. Blinking, baseline and reflex lachrymation and drainage compromise the topical application of therapeutics demanding repeated, often hourly applications of common lubricants. In contrast, topically administered chitosan-N-acetylcysteine-based eye drops were reported to sustain on the ocular surface for more than 24 h. The thiolated biopolymer can interact with the corneal mucin layer thereby forming covalent disulphide bridges, which may contribute to extended residence times.

Design/methodology/approach

In this study, the tribological characteristics of four different lubricants including hyaluronic acid and chitosan-N-acetylcysteine containing commercially available eye drops were investigated. For this purpose, a representative test setup was developed, which mimics the contact between the cornea and the eyelid wiper. Gels with different elastic properties coated with a mucin layer were used as a substrate to mimic the corneal surface. Tests were conducted with a micro-tribometer, and friction values were recorded. Contact zones were characterized by X-ray photoelectron spectroscopy to investigate wear and thiol bonding on the surface.

Findings

Results revealed the lowest average coefficient of friction values for chitosan-N-acetylcysteine-based eye drops and substrate dependence of the test setup.

Originality/value

In this study, the authors introduced an in vitro system to test different types of eye drops so that chemical interaction with the mucin layer can be observed. These interactions change the tribological performance significantly and must be considered to have results relevant to the actual application.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 1 December 1998

123

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 February 2001

55

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 12 March 2018

Fengyuan Liu, Srichand Hinduja and Paulo Bártolo

This paper aims to describe the control software of a novel manufacturing system called plasma-assisted bio-extrusion system (PABS), designed to produce complex multi-material and…

1199

Abstract

Purpose

This paper aims to describe the control software of a novel manufacturing system called plasma-assisted bio-extrusion system (PABS), designed to produce complex multi-material and functionally graded scaffolds for tissue engineering applications. This fabrication system combines multiple pressure-assisted and screw-assisted printing heads and plasma jets. Control software allows the users to create single or multi-material constructs with uniform pore size or pore size gradients by changing the operation parameters, such as geometric parameters, lay-down pattern, filament distance, feed rate and layer thickness, and to produce functional graded scaffolds with different layer-by-layer coating/surface modification strategies by using the plasma modification system.

Design/methodology/approach

MATLAB GUI is used to develop the software, including the design of the user interface and the implementation of all mathematical programing for both multi-extrusion and plasma modification systems.

Findings

Based on the user definition, G programing codes are generated, enabling full integration and synchronization with the hardware of PABS. Single, multi-material and functionally graded scaffolds can be obtained by manipulating different materials, scaffold designs and processing parameters. The software is easy to use, allowing the efficient control of the PABS even for the fabrication of complex scaffolds.

Originality/value

This paper introduces a novel additive manufacturing system for tissue engineering applications describing in detail the software developed to control the system. This new fabrication system represents a step forward regarding the current state-of-the-art technology in the field of biomanufacturing, enabling the design and fabrication of more effective scaffolds matching the mechanical and surface characteristics of the surrounding tissue and enabling the incorporation of high number of cells uniformly distributed and the introduction of multiple cell types with positional specificity.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 February 2001

30

Abstract

Details

Pigment & Resin Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Abstract

Purpose

In addition to agriculture, energy production, and industries, potable water plays a significant role in many fields, further increasing the demand for potable water. Purification and desalination play a major role in meeting the need for clean drinking water. Clean water is necessary in different areas, such as agriculture, industry, food industries, energy generation and in everyday chores.

Design/methodology/approach

The authors have used the different search engines like Google Scholar, Web of Science, Scopus and PubMed to find the relevant articles and prepared this mini review.

Findings

The various stages of water purification include coagulation and flocculation, coagulation, sedimentation and disinfection, which have been discussed in this mini review. Using nanotechnology in wastewater purification plants can minimize the cost of wastewater treatment plants by combining several conventional procedures into a single package.

Social implications

In society, we need to avail clean water to meet our everyday, industrial and agricultural needs. Purification of grey water can meet the clean water scarcity and make the environment sustainable.

Originality/value

This mini review will encourage the researchers to find out ways in water remediation to meet the need of pure water in our planet and maintain sustainability.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 15 August 2016

Belen Begines, Andrew L. Hook, Morgan R. Alexander, Christopher J. Tuck and Ricky D. Wildman

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

2439

Abstract

Purpose

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

Design/methodology/approach

The first step towards printing was ink development. Inks were characterised to carry out an estimation of their potential printability using the Z parameter to predict stable jetting conditions. Printability conditions were optimised for each ink using a Dimatix DMP-2800, which enabled 3D structures to be fabricated.

Findings

UV photo-initiated polymers, which resist bacterial attachment, were found to be printable using piezo-based inkjet printers. The waveform required for each ink depends on the value of the Z parameter. Once the waveform and the printability parameters were optimised, 3D objects were fabricated.

Research limitations/implications

This methodology has been confirmed as an effective method to 3D print materials that have been demonstrated to be bacteria resistant. However, ink curing depends on modification of some parameters (such as photoinitiator concentration or UV exposure time) which would result in an improvement of the curing process post jetting.

Social implications

The combination of inkjet based 3D printing with new materials resistant to bacterial attachment means the possibility of building customised medical devices with a high level of complexity and bespoke features can be fully realised. The scope and variability of the devices produced will exceed what can be achieved using standard fabrication methodologies and can be applied to reduce the incidence of device associated infections and to address increased morbidity, mortality and health care costs associated with nosocomial infections.

Originality/value

In this paper, the novel use of materials that resist bacterial attachment has been described to build 3D structures using material jetting. Its value lies on the potential impact this methodology could produce in the biomedical device and research fields.

Details

Rapid Prototyping Journal, vol. 22 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 24