Search results
1 – 10 of 985Ying-Chung Chen, Tsung-Hsien Yang and Siu-Tong Choi
This paper aims to study a dynamic analysis of a double-helical geared rotor system with oil-film bearing.
Abstract
Purpose
This paper aims to study a dynamic analysis of a double-helical geared rotor system with oil-film bearing.
Design/methodology/approach
A finite element model of a double-helical geared rotor system with oil-film bearing is developed, in which a rigid mass is used to represent the gear and the Timoshenko beam finite element represents the shaft; the equations of motion are obtained by applying Lagrange’s equation. Natural frequencies, Campbell diagram, lateral responses, axial responses, bearing stiffness coefficients, bearing damping coefficients and bearing force are investigated.
Findings
Natural frequencies and Campbell diagram of a double-helical geared rotor system with oil-film bearing are investigated. An increased helical angle enhanced the axial response of the system and reduced its lateral response. The distance between the node and bearing affected the lateral response magnitude on the node. The farther away the gear pair was from the central part of the shaft, the higher the system’s resonance frequency became. The different gear pair position has a significant influence on the bearing stiffness coefficient and bearing force, but it just has a little effect on the bearing damping coefficient.
Practical implications
The model of a double-helical geared rotor system with oil-film bearing is established in this paper. The dynamic characteristics of a double-helical geared rotor system with oil-film bearing are investigated. The numerical results of this study can be used as a reference for subsequent personnel research.
Originality/value
Although the dynamics characteristics of geared rotor bearing system have been reported in some literature, the dynamic analysis of a double-helical geared rotor-bearing system is still rarely investigated. This paper showed some novel results that lateral and axial response results are obtained by the different helical angle and different gear positions. In the future, it makes valuable contributions for further development of dynamic analysis of a double-helical geared rotor-bearing system.
Details
Keywords
Hemant Krishnarao Wagh, Girish R. Desale and Kartikeya Tripathi
The purpose of this paper is to give a brief introduction of helical spring locked washer along with extensive literatures survey on role of helical spring locked washer…
Abstract
Purpose
The purpose of this paper is to give a brief introduction of helical spring locked washer along with extensive literatures survey on role of helical spring locked washer in bolted joint analysis. It is very small component of bolted joint assembly, but it play vital role in holding the assembly components together. Helical shape of it produces spring effect in the assembly which is used for keeping the assembly in tension and that is lock the assembly under dynamic loading due to vibrations to avoid the accident.
Design/methodology/approach
The critical literatures survey identifies role of helical spring locked washer in different areas such as design optimization, mechanism of loosening-resistant components, bolted joint analysis, finite element-based modeling, analysis and simulation. The related literatures show contribution of helical spring washers in evaluation of anti-loosening performance of assemblies as compare to other types of washers.
Findings
It proposed that design optimization of helical spring locked washer is needed as it improves the performance in the form of load-deflection characteristics, load bearing capacity and provides the best locking force for optimize functionality.
Originality/value
The originality or value of this paper is to finding research gaps in literatures by dividing literatures into seven different research areas and concentrating the only on role of helical spring locked washer in bolted joint analysis.
Details
Keywords
The purpose of this paper is to develop the method for the calculation of residual stress and enduring deformation of helical springs.
Abstract
Purpose
The purpose of this paper is to develop the method for the calculation of residual stress and enduring deformation of helical springs.
Design/methodology/approach
For helical compression or tension springs, a spring wire is twisted. In the first case, the torsion of the straight bar with the circular cross-section is investigated, and, for derivations, the StVenant’s hypothesis is presumed. Analogously, for the torsion helical springs, the wire is in the state of flexure. In the second case, the bending of the straight bar with the rectangular cross-section is studied and the method is based on Bernoulli’s hypothesis.
Findings
For both cases (compression/tension of torsion helical spring), the closed-form solutions are based on the hyperbolic and on the Ramberg–Osgood material laws.
Research limitations/implications
The method is based on the deformational formulation of plasticity theory and common kinematic hypotheses.
Practical implications
The advantage of the discovered closed-form solutions is their applicability for the calculation of spring length or spring twist angle loss and residual stresses on the wire after the pre-setting process without the necessity of complicated finite-element solutions.
Social implications
The formulas are intended for practical evaluation of necessary parameters for optimal pre-setting processes of compression and torsion helical springs.
Originality/value
Because of the discovery of closed-form solutions and analytical formulas for the pre-setting process, the numerical analysis is not necessary. The analytical solution facilitates the proper evaluation of the plastic flow in torsion, compression and bending springs and improves the manufacturing of industrial components.
Details
Keywords
Ali Akbar Abbasian Arani and Hamed Uosofvand
This paper aims to investigate the fluid flow and heat transfer of a laboratory shell and tube heat exchanger that are analyzed using computational fluid dynamic approach…
Abstract
Purpose
This paper aims to investigate the fluid flow and heat transfer of a laboratory shell and tube heat exchanger that are analyzed using computational fluid dynamic approach by SOLIDWORKS flow simulation (ver. 2015) software.
Design/methodology/approach
In this study, several types of baffle including segmental baffle, butterfly baffle, helical baffle, combined helical-segmental baffle, combined helical-disk baffle and combined helical-butterfly baffle are examined. Two important parameters as the heat transfer and pressure drop are evaluated and analyzed. Based on obtained results, segmental baffle has the highest amount of heat transfer and pressure drop. To assess the integrative performance, performance coefficient defines as “Q/Δp” is used.
Findings
This investigation showed that among the presented baffle types, the heat exchangers equipped with disk baffle has the highest heat transfer. In addition, in the same mass flow rate, the performance coefficient of the shell and tube heat exchanger equipped with helical-butterfly baffle is the highest among the proposed models.
Originality/value
After combined helical-butterfly baffle the butterfly baffle, disk baffle, helical-segmental baffle and helical-disk baffle show their superiority of 35.12, 25, 22 and 12 per cent rather than the common segmental baffle, respectively. Furthermore, except for the combined helical-disk baffle, the other type of combined baffle have better performance compare to the basic configuration (butterfly and segmental baffle).
Details
Keywords
The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author…
Abstract
Purpose
The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author develops the equations for transverse vibrations of the axially loaded helical springs. The method is based on the concept of an equivalent column. Second, the author reveals the effect of axial load on the fundamental frequency of transverse vibrations and derive the explicit formulas for this frequency. The fundamental natural frequency of the transverse vibrations of the spring depends on the variable length of the spring. The reduction of frequency with the load is demonstrated. Finally, when the frequency nullifies, the side buckling spring occurs.
Design/methodology/approach
Helical springs constitute an integral part of many mechanical systems. A coil spring is a special form of spatially curved column. The center of each cross-section is located on a helix. The helix is a curve that winds around with a constant slope of the surface of a cylinder. An exact stability analysis based on the theory of spatially curved bars is complicated and difficult for further applications. Hence, in most engineering applications a concept of an equivalent column is introduced. The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The transverse vibration is represented by a differential equation of fourth order in place and second order in time. The solution of the undamped model equation could be obtained by separation of variables. The fundamental natural frequency of the transverse vibrations depends on the current length of the spring. Natural frequency is the function of the deflection and slenderness ratio. Is the fundamental natural frequency of transverse oscillations nullifies, the lateral buckling of the spring with the natural form occurs. The mode shape corresponds to the buckling of the spring with moment-free, simply supported ends. The mode corresponds to the buckling of the spring with clamped ends. The author finds the critical spring compression.
Findings
Buckling refers to the loss of stability up to the sudden and violent failure of seed straight bars or beams under the action of pressure forces, whose line of action is the column axis. The known results for the buckling of axially overloaded coil springs were found using the static stability criterion. The author uses an alternative approach method for studying the stability of the spring. This method is based on dynamic equations. In this paper, the author derives the equations for transverse vibrations of the pressure-loaded coil springs. The fundamental natural frequency of the transverse vibrations of the column is proved to be the certain function of the axial force, as well as the variable length of the spring. Is the fundamental natural frequency of transverse oscillations turns to be to zero, is the lateral buckling of the spring occurs.
Research limitations/implications
The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The more accurate model is based on the equations of motion of loaded helical Timoshenko beams. The dimensionless for beams of circular cross-section and the number of parameters governing the problem is reduced to four (helix angle, helix index, Poisson coefficient, and axial strain) is to be derived. Unfortunately, that for the spatial beam models only numerical results could be obtained.
Practical implications
The closed form analytical formulas for fundamental natural frequency of the transverse vibrations of the column as function of the axial force, as well as the variable length of the spring are derived. The practically important formulas for lateral buckling of the spring are obtained.
Originality/value
In this paper, the author derives the new equations for transverse vibrations of the pressure-loaded coil springs. The author demonstrates that the fundamental natural frequency of the transverse vibrations of the column is the function of the axial force. For study of the stability of the spring the author uses an alternative approach method. This method is based on dynamic equations. The new, original expressions for lateral buckling of the spring are also obtained.
Details
Keywords
Mingyong Liu, Peidong Xu, Jinxi Zhang and Huafeng Ding
Power loss is an important index to evaluate the transmission performance of a gear pair. In some cases, the starved lubrication exists on the gear contact interface. The…
Abstract
Purpose
Power loss is an important index to evaluate the transmission performance of a gear pair. In some cases, the starved lubrication exists on the gear contact interface. The purpose of this paper is to reveal the mechanical power loss of a helical gear pair under starved lubrication.
Design/methodology/approach
A starved thermal-elastohydrodynamic lubrication (EHL) model is proposed to evaluate the tribological properties of a helical gear pair. The numerical result has been validated against the published simulation data. Based on the proposed model, the influence of thermal effect, working conditions, inlet oil-supply layer and surface roughness on the mechanical power loss and lubrication performance has been discussed.
Findings
Results show that the thermal effect has a significant effect on the tribological properties of helical gear pair, especially on mechanical power loss. For a specified working condition, there is an optimal oil supply for gear lubrication to obtain the state of full film lubrication. Meanwhile, it reveals that the mechanical power loss increases with the increase of the surface roughness amplitude.
Originality/value
In this paper, a starved thermal-EHL model has been developed for the helical gear pair based on the finite line contact theory. This model can be used to analyze the tribological properties of gear pair from full film lubrication to mixed lubrication. The results can provide the tribological guidance for design of a helical gear pair.
Details
Keywords
Yanzhong Wang, Yang Liu, Wen Tang and Peng Liu
The finite element method has been increasingly applied in stress, thermal and dynamic analysis of gear transmissions. Preparing the models with different design and…
Abstract
Purpose
The finite element method has been increasingly applied in stress, thermal and dynamic analysis of gear transmissions. Preparing the models with different design and modification parameters for the finite element analysis is a time-consuming and highly skilled burden.
Design/methodology/approach
To simplify the preprocessing work of the analysis, a parametric finite element modeling method for spur and helical gears including profile and lead modification is developed. The information about the nodes and elements is obtained and exported into the finite element software to generate the finite element model of the gear automatically.
Findings
By using the three-dimensional finite element tooth contact analysis method, the effects of tooth modifications on the transmission error and contact stress of spur and helical gears are presented.
Originality/value
The results demonstrate that the proposed method is useful for verifying the modification parameters of spur and helical gears in the case of deformations and misalignments.
Details
Keywords
Sultan Jumayev, Aleksandar Borisavljevic, Konstantin Boynov, Juha Pyrhönen and Elena A. Lomonova
The purpose of this paper is to give a simple, fast and universal inductance calculation approach of slotless-winding machines and comparison of inductances of toroidal…
Abstract
Purpose
The purpose of this paper is to give a simple, fast and universal inductance calculation approach of slotless-winding machines and comparison of inductances of toroidal, concentrated and helical-winding machines, since these winding types are widely used among low-power PM machines.
Design/methodology/approach
Harmonic modeling approach is applied to model the magnetic field of the windings in order to calculate the synchronous inductances. The method is based on distinction between electromagnetic properties of different regions in the machine where each region is represented by its own governing equation describing the magnetic field. The governing equations are obtained from Maxwell’s equations by introducing vector potential in order to simplify the calculations.
Findings
Results of the inductances of toroidal, concentrated and helical-winding slotless PM machines, which have the same torque and dimensions, obtained by the proposed analytical method are in good agreement with 3D FEM, where the relative difference is smaller than 15 percent. However, the calculation time of the analytical method is significantly less than in 3D FEM: seconds vs hours. Additionally, from the results it is concluded that the toroidal-winding machine has the highest inductance and DC resistance values among considered machines. Helical-winding machine has lowest inductance and DC resistance values. Inductance of concentrated-winding machine is between inductance of helical and toroidal windings; however, DC resistance of the concentrated windings is comparable with resistance toroidal windings.
Originality/value
In this paper the inductance calculation based on harmonic modeling approach is extended for toroidal and helical-winding machines which makes the method applicable for most of the slotless machine types.
Details
Keywords
Yong Yang, Wenguang Li, Jiaxu Wang and Qinghua Zhou
The purpose of this study is to investigate the tribological performance of helical gear pairs with consideration of the properties of non-Newtonian lubricant and the real…
Abstract
Purpose
The purpose of this study is to investigate the tribological performance of helical gear pairs with consideration of the properties of non-Newtonian lubricant and the real three-dimensional (3D) topography of tooth flanks.
Design/methodology/approach
Based on the mixed elastohydrodynamic lubrication (EHL) theory for infinite line contact, this paper proposes a complete model for involute helical gear pairs considering the real 3D topography of tooth flanks and the properties of non-Newtonian lubricant. Film thickness, contact load and contact area ratios at the mid-point of contact line are studied for each angular displacement of pinion. Both the total friction coefficient and surface flash temperature are calculated after obtaining the values of pressure and subsurface stress. Then, the influences of input parameters including rotational speed and power are investigated.
Findings
During the meshing process, contact load ratio and area ratio of the two rough surface cases first increase and then decrease; the maximum flash temperature rise (MFTR) on the gear is lower than that on the pinion first, but later the situation converses. For cylindrical gears, on the plane of action, there is a point or a line where the instantaneous friction reduces to a minimum value in a sudden, as the sliding–rolling ratio becomes zero. When rotational speed increases, film thickness becomes larger, and meanwhile, contact load ratio, coefficient of friction and MFTR gradually reduce.
Originality/value
A comprehensive analysis is conducted and a computer program is developed for meshing geometry, kinematics, tooth contact, mixed EHL characteristics, friction, FTR and subsurface stress of involute helical gear pairs. Besides, a numerical simulation model is developed, which can be used to analyze mixed lubrication with 3D machined roughness under a wide range of operating conditions.
Details
Keywords
Describes the increasing need for simple and efficient antennas andlooks at the performance of quarter wavelength and helical antennas.Concludes the optimum performances…
Abstract
Describes the increasing need for simple and efficient antennas and looks at the performance of quarter wavelength and helical antennas. Concludes the optimum performances from both antennas are ruled by the choice of a suitable ground plane. The helical antenna is capable of producing a circularly polarized field, whereas the quarter wavelength antenna produces only linearly polarized fields. Both types exhibit low efficiency, with the helical antenna being less efficient owing to its short structure.
Details