Search results

1 – 10 of 10
Article
Publication date: 24 April 2023

João Paulo Nascimento Silva, Cledison Carlos de Oliveira, Gabriel Pedrosa and André Grutzmann

This paper aims to analyse the technological, economic and environmental impacts of disruptive innovations in the transportation mobility market.

Abstract

Purpose

This paper aims to analyse the technological, economic and environmental impacts of disruptive innovations in the transportation mobility market.

Design/methodology/approach

The paper gathered data from World Bank and 13 open sources in an exploratory, descriptive and applied investigation on potentially disruptive transport innovations outcomes in G7 and BRICS (Brazil, Russian Federation, India, China and South Africa) economies, businesses and societies.

Findings

The results suggest positive implications for technological leapfrogging of electric vehicles (EV), autonomous vehicles (AVs) and electric vertical take-off and landing (eVTOLs), such as gains in energy consumption, infrastructure improvement, greenhouse gas emissions reduction, economic growth and the opportunity for new disruptive technologies to improve or even revolutionize the transportation ecosystem.

Research limitations/implications

This study has clear limitations as it compares G7 and BRICS hypothetical scenarios where internal combustion vehicles were replaced by new technologies, ceteris paribus. Even so, as theoretical implications, the study presents market scenarios for EVs, AVs and eVTOLs technologies, bringing benefits to the disruptive innovation theory by expanding the understanding of the subject and also opening avenues of investigation by exploring new technological, economic and environmental possibilities.

Practical implications

This study emphasises potentially disruptive technologies’ technological, economic and sustainable benefits to countries through technological leapfrogging. The organizations can delve into results to investigate forthcoming markets and seek advantageous positions. Economic and social gains from leapfrogging could motivate government bodies to finance research focusing on EVs, AVs and eVTOLs diffusion.

Originality/value

The paper’s originality resides in aggregating multiple data sources to compare technological leapfrogging in G7 and BRICS transportation. The different views allowed for exploring the potential outcomes of EVs, AVs and eVTOLs on economic, sustainability and market dimensions in developed and developing countries.

Article
Publication date: 23 March 2020

Benoit Picard, Mathieu Picard, Jean-Sébastien Plante and David Rancourt

The limited energy density of batteries generates the need for high-performance power sources for emerging eVTOL applications with radical operational improvement potential over…

Abstract

Purpose

The limited energy density of batteries generates the need for high-performance power sources for emerging eVTOL applications with radical operational improvement potential over traditional aircraft. This paper aims to evaluate on-design and off-design recuperated turbogenerator performances based on newly developed compression loaded ceramic turbines, the Inside-out Ceramic Turbine (ICT), in order to select the optimum engine configuration for sub-megawatt systems.

Design/methodology/approach

System-level thermal engine modeling is combined with electric generators and power electronics performance predictions to obtain the Pareto front between efficiency and power density for a variety of engine designs, both for recuperated and simple cycle turbines. Part load efficiency for those engines are evaluated, and the results are used for an engine selection based on a simplified eVTOL mission capability.

Findings

By operating with high turbine inlet temperature, variable output speed and adequately sized recuperator, a turbogenerator provides exceptional efficiency at both nominal power and part load operation for a turbomachine, while maintaining the high power density required for aircraft. In application with a high peak-to-cruise power ratio, such power source would provide eight times the range of battery-electric power pack and an 80% improvement over the state-of-the-art simple cycle turbogenerator.

Practical implications

The implementation of a recuperator would provide additional gains especially important for military and on-demand mobility applications, notably reducing the heat signature and noise of the system. The engine low-pressure ratio reduces its complexity and combined with the fuel savings, the system could significantly reduce operational cost.

Originality/value

Implementation of radically new ICT architecture provides the key element to make a sub-megawatt recuperated turbogenerator viable in terms of power density. The synergetic combination of a recuperator, high temperature turbine and variable speed electric generator provides drastic improvement over simple-cycle turbines, making such a system highly relevant as the power source for future eVTOL applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 May 2020

Federico Barra, Matteo Scanavino and Giorgio Guglieri

The primary purpose of this study is to analyse the performance of multirotor unmanned aircraft system platforms for passenger transport and compare them with an ordinary…

Abstract

Purpose

The primary purpose of this study is to analyse the performance of multirotor unmanned aircraft system platforms for passenger transport and compare them with an ordinary helicopter solution. This study aims to define a standard procedure for power budget analysis of unconventional vehicles recently proposed in the aerospace industry, providing guidelines on rotor sizing in terms of required power and the total number of rotors. The ultimate purpose of the proposed work is to describe a methodology for power estimation with regard to emerging electric vertical takeoff and landing (EVTOL) vehicles.

Design/methodology/approach

In the context of urban mobility, short-range passenger transport between critical hubs in cities is taken into account and innovative aircraft and traditional helicopters are compared according to a common mission profile. The power budget equations used in the helicopter literature are revisited to consider different multirotor configurations (up to 20 rotors) and evaluate the feasibility of innovative aerospace vehicle design.

Findings

The paper includes insights into the maximum number of rotors that ensure a significative, relative power reduction compared to helicopter platforms (the power-to-cruise over power-to-hover ratio appears to be improved). Based on this preliminary analysis, the results suggest the benefit of reducing the installed rotors to avoid excessive power loss in forward flight.

Practical implications

The proposed study provides guidelines for further design considerations and the future development of EVTOL multirotor aircraft.

Originality/value

This paper fulfils the identified need for a systematic approach on performance analysis for innovative vehicles involved in commercial applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 December 2019

Ralph H. Jansen, Cheryl L. Bowman, Sean Clarke, David Avanesian, Paula J. Dempsey and Rodger W. Dyson

This paper aims to review national aeronautics and space administration (NASA’s) broad investments in electrified aircraft propulsion (EAP). NASA investments are guided by an…

Abstract

Purpose

This paper aims to review national aeronautics and space administration (NASA’s) broad investments in electrified aircraft propulsion (EAP). NASA investments are guided by an assessment of potential market impacts, technical key performance parameters, and technology readiness attained through a combination of studies, enabling fundamental research and flight research.

Design/methodology/approach

The impact of EAP varies by market and NASA is considering three markets as follows: national/international, on-demand mobility and short-haul regional air transport. Technical advances in key areas have been made that indicate EAP is a viable technology. Flight research is underway to demonstrate integrated solutions and inform standards and certification processes.

Findings

A key finding is that sufficient technical advances in key areas have been made, which indicate EAP is a viable technology for aircraft. Significant progress has been made to reduce EAP adoption barriers and further work is needed to transition the technology to a commercial product and improve the technology, so it is applicable to large transonic aircraft.

Practical implications

Significant progress has been made to reduce EAP adoption barriers and further work is needed to transition the technology to a commercial product and improve the technology, so it is applicable to large transonic aircraft.

Originality/value

This paper will review the activities of the hybrid gas-electric subproject of the Advanced Air Transport Technology Project, the Revolutionary Vertical Lift Technology Project and the X-57 Flight Demonstration Project, and discuss the potential EAP benefits for commercial and military applications. This paper focuses on the vehicle-related activities, however, there are related NASA activities in air space management and vehicle autonomy activities, as well as a breakthrough technology project called the Convergent Aeronautics Solutions Project. The target audience is people interested in EAP.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 10 June 2021

Jaeyoung Cha, Juyeol Yun and Ho-Yon Hwang

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with…

1933

Abstract

Purpose

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with different types of engines.

Design/methodology/approach

The vehicle configuration was devised considering the dimensions and operational restrictions of the roads, runways and parking lots in South Korea. A folding wing design was adopted for road operations and parking. The propulsion designs considered herein use gasoline, diesel and hybrid architectures for longer-range missions. The sizing point of the roadable PAV that minimizes the wing area was selected, and the rate of climb, ground roll distance, cruise speed and service ceiling requirements were met. For various engine types and mission profiles, the performances of differently sized PAVs were compared with respect to the MTOW, wing area, wing span, thrust-to-weight ratio, wing loading, power-to-weight ratio, brake horsepower and fuel efficiency.

Findings

Unlike automobiles, the weight penalty of the hybrid system because of the additional electrical components reduced the fuel efficiency considerably. When the four engine types were compared, matching the total engine system weight, the internal combustion (IC) engine PAVs had better fuel efficiency rates than the hybrid powered PAVs. Finally, a gasoline-powered PAV configuration was selected as the final design because it had the lowest MTOW, despite its slightly worse fuel efficiency compared to that of the diesel-powered engine.

Research limitations/implications

Although an electric aircraft powered only by batteries most capitalizes on the operating cost, noise and emissions benefits of electric propulsion, it also is most hampered by range limitations. Air traffic integration or any safety, and noise issues were not accounted in this study.

Practical implications

Aircraft sizing is a critical aspect of a system-level study because it is a prerequisite for most design and analysis activities, including those related to the internal layout as well as cost and system effectiveness analyses. The results of this study can be implemented to design a PAV.

Social implications

This study can contribute to the establishment of innovative PAV concepts that can alleviate today’s transportation problems.

Originality/value

This study compared the sizing results of PAVs with hybrid engines with those having IC engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 September 2023

Bhawesh Sah and Rohit Titiyal

Companies are adopting innovative methods for responsiveness and efficiency in the public transport sector. The implementation of air-taxi services (ATS) in the transport sector…

Abstract

Purpose

Companies are adopting innovative methods for responsiveness and efficiency in the public transport sector. The implementation of air-taxi services (ATS) in the transport sector is a move in this direction. Air taxis have a two-pronged advantage as they can reduce travel times by avoiding traffic congestion and have the potential to reduce carbon footprint compared to traditional modes of public transportation. Many companies worldwide are developing and testing ATS for practical applications. However, many factors may play a significant role in adopting ATS in the transport sector. This paper attempts to unearth such critical success factors (CSFs) and establish the interrelationships between these factors.

Design/methodology/approach

Fifteen CSFs were identified by systematically reviewing the literature and taking experts' input. An integrated multi-criteria decision-making (MCDM) technique, Decision-Making Trial and Evaluation Laboratory-Analytic Network Process (DEMATEL-ANP [DANP]) was used to envisage the causal relationships between the identified CSF.

Findings

The results reveal that Govt Regulations (GOR), Skilled Workforce (SKF) and Conductive Research Environment (CRE) are the most influential factors that impact the adoption of ATS in the transport sector.

Practical implications

The research implications of these findings will help practitioners and policymakers effectively implement ATS in the public transportation sector.

Originality/value

This is the first kind of study that identifies and explores the different CSFs for ATS implementation in public transportation. The CSFs are evaluated with the help of a framework built with inputs from logistics experts. The study recognizes the CSFs for ATS implementation and provides a foundation for future research and smooth adoption of ATS.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 15 July 2022

Anna Maria Mazur, Jens ten Thije, Joost Vreeken, Henk Hesselink, Bartosz Dziugieł, Sylwester Wyka, Adam Liberacki, Teresa Idzikowska, Anna Dorota Stanczyk, Agata Utracka, Piotr Ginter, Sandra Czupryn, Michele Giannuzzi, Sandra Melo, Adriana Witkowska-Konieczny, Vittorio Di Vito and Aniello Menichino

The purpose of this paper is to study the overall framework in which the Urban Air Mobility (UAM) deployment is expected to be implemented. Another aim of the study is to give a…

Abstract

Purpose

The purpose of this paper is to study the overall framework in which the Urban Air Mobility (UAM) deployment is expected to be implemented. Another aim of the study is to give a better overview on the current regulations and standards including the impact of the regulations on the industry, operations and cities.

Design/methodology/approach

This paper performs a literature review on the regulatory framework, which provides a clear view of the current regulations and standards. The review includes the insight into the details of possible international rules for the future, considering operations in the specific and certified categories. The impact and trends of current and future regulations are also presented.

Findings

The analysis described in this paper shows a strong upward trend in UAM technical and operational developments as well as further potential for a successful incorporation in city mobility concepts. This paper indicates the importance of the representatives of guideline development organizations, industry, agencies and other important players involved in the standard development process.

Practical implications

This section describes synthesis on the required level of safety for UAM operations as well as description on the impact of the regulations from different perspectives, including industry and certification of urban aircraft, operations and air traffic management, cities and the governance of the urban airspace and well as technology.

Originality/value

Barriers such as legislation do not allow the common UAM to be deployed. This paper studies the overall framework in which the UAM deployment is expected to be implemented.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 6 September 2023

Ferhan K. Sengur and Onder Altuntas

Aviation is not only one of the key contributors to the economy and social structure of the world but it is also an industry whose environmental impacts are being closely…

Abstract

Aviation is not only one of the key contributors to the economy and social structure of the world but it is also an industry whose environmental impacts are being closely monitored. Aircraft efficiency and technological advancements have significantly reduced aviation noise and emissions in recent decades. Nevertheless, as the need for passenger and freight transportation grows, the aviation sector is becoming a primary source of environmental issues and a significant driver of global warming. This chapter focusses on environmentally sustainable aviation with a net-zero emission target. It also highlights sustainable aviation policies and collaborative initiatives in the aviation industry to meet the 2050 net-zero emission goal. While the industry's efforts have increased opportunities recently, the industry has also had to face several challenges to achieve the net-zero aviation target.

Article
Publication date: 19 December 2019

Vincent Wing Sun Tung, Timothy Mou Fei Cheong and Stephen James To

The purpose of this paper is to review the past and future perspectives of smart mobility in the context of destinations.

475

Abstract

Purpose

The purpose of this paper is to review the past and future perspectives of smart mobility in the context of destinations.

Design/methodology/approach

A review of previous work on smart mobility is provided.

Findings

The development of smart mobility will bring unprecedented changes to tourism management, particularly in the areas of tourist travel patterns and decision-making.

Originality/value

It is relevant and timely to discuss the link between smart mobility and tourism management given the profound changes that they will bring to smart destinations.

Details

Tourism Review, vol. 75 no. 1
Type: Research Article
ISSN: 1660-5373

Keywords

Article
Publication date: 14 June 2023

Jeongjoon Boo, Seung Yeob Lee and Byung Duk Song

The next generation of mobility is arising, and various challenging mobilities have entered the limelight. One of the most exciting of these is urban air mobility (UAM), and one…

Abstract

Purpose

The next generation of mobility is arising, and various challenging mobilities have entered the limelight. One of the most exciting of these is urban air mobility (UAM), and one of its challenges is constructing effective and efficient UAM service network. This study took a quantitative approach to the problem in an effort to support and facilitate the UAM service industry.

Design/methodology/approach

This study derived a multi-objective and multi-period (MOMP) location optimization model to support strategic UAM service network design. The model, based on its long-term service plan, determines where and when to open UAM airports. In addition, this study applied a modified e-constraint algorithm to derive managerial decisions on the Pareto relationship in consideration of multiple objectives and multiple periods.

Findings

Each Pareto solution represents a different UAM service network configuration. Thus, the model can analyze the trade-offs between Pareto decisions for the UAM service network. A case study of UAM service network design in South Korea demonstrates the validity of the proposed mathematical model and algorithm.

Practical implications

The design of a UAM service network should consider various aspects. Its construction and operation would require significant investments of time, capital and people, which would redound to society over a significant span of time. The results of this study provide quantitative guidelines for derivation and analysis of various UAM service network configurations in consideration of multiple objectives and multiple periods.

Originality/value

This paper proposes MOMP optimization, which approach is suitable to the fundamental characteristics of expanding UAM service networks and their design. It is expected that the present study will make significant contributions to the efforts of those deriving and analyzing future UAM service networks.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 35 no. 12
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 10 of 10