Search results

1 – 10 of 925
Article
Publication date: 5 February 2024

Swarup Mukherjee, Anupam De and Supriyo Roy

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk…

Abstract

Purpose

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk prioritization uses a risk priority number (RPN) aligned to the risk analysis. Imprecise information coupled with a lack of dealing with hesitancy margins enlarges the scope, leading to improper assessment of risks. This significantly affects monitoring quality and performance. Against the backdrop, a methodology that identifies and prioritizes the operational supply chain risk factors signifies better risk assessment.

Design/methodology/approach

The study proposes a multi-criteria model for risk prioritization involving multiple decision-makers (DMs). The methodology offers a robust, hybrid system based on the Intuitionistic Fuzzy (IF) Set merged with the “Technique for Order Performance by Similarity to Ideal Solution.” The nature of the model is robust. The same is shown by applying fuzzy concepts under multi-criteria decision-making (MCDM) to prioritize the identified business risks for better assessment.

Findings

The proposed IF Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) for risk prioritization model can improve the decisions within organizations that make up the chains, thus guaranteeing a “better quality in risk management.” Establishing an efficient representation of uncertain information related to traditional failure mode and effects analysis (FMEA) treatment involving multiple DMs means identifying potential risks in advance and providing better supply chain control.

Research limitations/implications

In a company’s supply chain, blockchain allows data storage and transparent transmission of flows with traceability, privacy, security and transparency (Roy et al., 2022). They asserted that blockchain technology has great potential for traceability. Since risk assessment in supply chain operations can be treated as a traceability problem, further research is needed to use blockchain technologies. Lastly, issues like risk will be better assessed if predicted well; further research demands the suitability of applying predictive analysis on risk.

Practical implications

The study proposes a hybrid framework based on the generic risk assessment and MCDM methodologies under a fuzzy environment system. By this, the authors try to address the supply chain risk assessment and mitigation framework better than the conventional one. To the best of their knowledge, no study is found in existing literature attempting to explore the efficacy of the proposed hybrid approach over the traditional RPN system in prime sectors like steel (with production planning data). The validation experiment indicates the effectiveness of the results obtained from the proposed IF TOPSIS Approach to Risk Prioritization methodology is more practical and resembles the actual scenario compared to those obtained using the traditional RPN system (Kim et al., 2018; Kumar et al., 2018).

Originality/value

This study provides mathematical models to simulate the supply chain risk assessment, thus helping the manufacturer rank the risk level. In the end, the authors apply this model in a big-sized organization to validate its accuracy. The authors validate the proposed approach to an integrated steel plant impacting the production planning process. The model’s outcome substantially adds value to the current risk assessment and prioritization, significantly affecting better risk management quality.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 11 January 2023

Ibrahim Yahaya Wuni and Khwaja Mateen Mazher

Modular integrated construction (MiC) is a modern construction method innovating and reinventing the traditional site-based construction method. As it integrates advanced…

Abstract

Purpose

Modular integrated construction (MiC) is a modern construction method innovating and reinventing the traditional site-based construction method. As it integrates advanced manufacturing principles and requires offsite production of volumetric building components, several factors and conditions must converge to make the MiC method suitable and efficient for building projects in each context. This paper aims to present a knowledge-based decision support system (KB-DSS) for assessing a project’s suitability for the MiC method.

Design/methodology/approach

The KB-DSS uses 21 significant suitability decision-making factors identified through literature review, consultation of experts and questionnaire surveys. It has a knowledge base, a DSS and a user interface. The knowledge base comprises IF-THEN production rules to compute the MiC suitability score with the efficient use of the powerful reasoning and explanation capabilities of DSS.

Findings

The tool receives the inputs of a decision-maker, computes the MiC suitability score for a given project and generates recommendations based on the score. Three real-world projects in Hong Kong are used to demonstrate the applicability of the tool for solving the MiC suitability assessment problem.

Originality/value

This study established the complex and competing significant conditions and factors determining the suitability of the MiC method for construction projects. It developed a unique tool combining the capabilities of expert systems and decision support system to address the complex problem of assessing the suitability of the MiC method for construction projects in a high-density metropolis.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

171

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 29 March 2024

Edoardo Trincanato and Emidia Vagnoni

Business intelligence (BI) systems and tools are deemed to be a transformative source with the potential to contribute to reshaping the way different healthcare organizations’…

36

Abstract

Purpose

Business intelligence (BI) systems and tools are deemed to be a transformative source with the potential to contribute to reshaping the way different healthcare organizations’ (HCOs) services are offered and managed. However, this emerging field of research still appears underdeveloped and fragmented. Hence, this paper aims to reconciling, analyzing and synthesizing different strands of managerial-oriented literature on BI in HCOs and to enhance both theoretical and applied future contributions.

Design/methodology/approach

A literature-based framework was developed to establish and guide a three-stage state-of-the-art systematic literature review (SLR). The SLR was undertaken adopting a hybrid methodology that combines a bibliometric and a content analysis.

Findings

In total, 34 peer-review articles were included. Results revealed significant heterogeneity in theoretical basis and methodological strategies. Nonetheless, the knowledge structure of this research’s stream seems to be primarily composed of five clusters of interconnected topics: (1) decision-making, relevant capabilities and value creation; (2) user satisfaction and quality; (3) process management, organizational change and financial effectiveness; (4) decision-support information, dashboard and key performance indicators; and (5) performance management and organizational effectiveness.

Originality/value

To the authors’ knowledge, this is the first SLR providing a business and management-related state-of-the-art on the topic. Besides, the paper offers an original framework disentangling future research directions from each emerged cluster into issues pertaining to BI implementation, utilization and impact in HCOs. The paper also discusses the need of future contributions to explore possible integrations of BI with emerging data-driven technologies (e.g. artificial intelligence) in HCOs, as the role of BI in addressing sustainability challenges.

Details

Journal of Health Organization and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7266

Keywords

Article
Publication date: 10 April 2024

Francesco Tajani, Francesco Sica, Pierfrancesco De Paola and Pierluigi Morano

The paper aims to provide a decision-support model to ensure a proper use of the limited resources, financial and not, for the enhancement of the cultural heritage and…

Abstract

Purpose

The paper aims to provide a decision-support model to ensure a proper use of the limited resources, financial and not, for the enhancement of the cultural heritage and comprehensive development of small towns from sustainable perspective.

Design/methodology/approach

The assessment model is set up using a multi-criteria method that combines elements of linear planning with a performance indicators system that may represent the complexity of the territory’s cultural identity as a result of existing cultural-historical assets.

Findings

The model reliability is tested in a case study in a Municipality in southern Italy. The case study’s findings highlight the advantages for the public/private operators, who can consciously choose which preservation and restoration projects to fund while taking into account the effects those decisions will have on the economic, social and environmental context of reference.

Research limitations/implications

Due to the suggested operational approach and the selection of variables for accounting economic, social and environmental impacts by the renewal project, the research findings may not be generalizable. Therefore, it is recommended that researchers look into the suggested theories in more detail.

Practical implications

The study offers implications for designing a user-friendly tool to help decision-making processes from a private–public viewpoint in a reasonable allocation of financial resources among investments for cultural property asset enhancement.

Originality/value

The suggested operational approach provides a reliable information apparatus to depict the decision-making process under small-town development in accordance with sustainability dimensions.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 2 January 2024

Dimitrios Markopoulos, Anastasios Tsolakidis, Ioannis Triantafyllou, Georgios A. Giannakopoulos and Christos Skourlas

This study aims to analyze a conspicuous corpus of literature related to the field of technology-based intensive care research and to develop an architecture model of the future…

Abstract

Purpose

This study aims to analyze a conspicuous corpus of literature related to the field of technology-based intensive care research and to develop an architecture model of the future smart intensive care unit (ICU).

Design/methodology/approach

Papers related to the topics of electronic health record (EHR), big data, data flow and clinical decision support in ICUs were investigated. These concepts have been analyzed in combination with secondary use of data, prediction models, data standardization and interoperability challenges. Based on the findings, an architecture model evaluated using MIMIC III is proposed.

Findings

Research identified issues regarding implementation of systems, data sources, interoperability, management of big data and free text produced in ICUs and lack of accuracy of prediction models. ICU should be treated as part of a greater system, able to intercommunicate with other entities.

Research limitations/implications

The research examines the current needs of ICUs in interoperability and data management. As environment changes dynamically, continuous assessment and evaluation of the model with other ICU databases is required.

Originality/value

The proposed model improves ICUs interoperability in national health system, ICU staff intercommunication, remote access and decision support. Its modular approach ensures that ICUs can have their own particularities and specialisms while ICU functions provide ongoing expertise and training to upgrade its staff.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 31 January 2024

Tamer Refaat and Marwa El-Zoklah

This study aims to formulate a user-friendly pre-design model that could be a decision support tool for green wall systems to assist designers in selecting an optimal green wall…

Abstract

Purpose

This study aims to formulate a user-friendly pre-design model that could be a decision support tool for green wall systems to assist designers in selecting an optimal green wall system aligned with specified performance criteria while concurrently addressing project requirements linked to social and economic parameters. This approach seeks to enhance overall project satisfaction for the designer and the owner.

Design/methodology/approach

A correlation between the green wall context and design requirements and its performance on the buildings have been defined by considering its social and economic parameters, which represented the owner preferences to ensure the most satisfaction from installation as it achieves the required performance that is defined by the designer such as maximizing thermal insulation, improving indoor air quality, reducing the needed heating and cooling loads, etc. and also to achieve the satisfaction in social and economic requirements defined by the owner such as system installation cost, system maintenance cost, adding beauty value, etc.

Findings

The research developed an easy pre-design model to be a tool for green wall system decision-making for the most suitable system, which contains three main steps: the first one is defining the required performance of the green wall (designer requirements), the second step is limiting the context of the project which is made by designer and the owner requirements and finally the third step is choosing the system components that ensures achieving the requirements of both owners and designer, related to the building and climate context.

Originality/value

The added value lies in developing a green wall decision-making tool, essentially a pre-design model. This model considers the correlation between the project’s context, encompassing climate and building conditions. It provides a structured approach for decision-making in the early stages of green wall design. It offers valuable insights into the optimal choices related to system type, installation methods and plant characteristics. This enhanced decision-making tool contributes to more informed and efficient design processes, considering each project’s specific needs and conditions.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 26 May 2023

Altayeb Qasem and Abdulaziz Saud Almohassen

This study aims to develop a constructability index (CI) that can ease the construction activities in a project based on the contractors’ experience and resources. The proposed CI…

Abstract

Purpose

This study aims to develop a constructability index (CI) that can ease the construction activities in a project based on the contractors’ experience and resources. The proposed CI is a vital decision support tool that quantifies the difficulty level for the contractor to execute certain activities with the contingency of other project elements. The virtual reality (VR) technology was used to provide additional data, communicate the contingency impact of other project elements on specific activities and provide sequential execution data to the contractors. This can minimize the risk of not being able to execute various activities on time and within the budget.

Design/methodology/approach

The VR-based CI was developed through two steps. Step 1 was to identify the factors affecting constructability by exploring the literature and consulting local construction experts. These factors were then organized through a hierarchy of main factors and subfactors and validated by local experts through predesigned surveys. The factors were classified into VR dependent or non-VR independent, and their relative weights were calculated using the analytical hierarchy process along with their reliability, which was determined using Cronbach’s alpha approach. Step 2 was to define the attributes for the constructability factors defined in Step 1 using the Multi Attribute Utility Theory to quantify the contractor’s compliance level of these factors by giving them the appropriate score. The utility factors for the VR-independent factors were obtained through standards, literature and local surveys, and they were quantified on a 1–10 scale. However, the VR-dependent factors were given their corresponding scores using the developed VR navigation environment generated by integrating Autodesk Revit and Navisworks software. Accordingly, the CI for each activity was evaluated, and the overall CI for the project was calculated by aggregating the CIs for all activities.

Findings

The developed CI quantifies the contractor’s ability to execute construction projects and addresses the lack of communication and coordination between the various construction units in the planning phase itself. Moreover, it can resolve possible hard (physical) and soft (time) construction clashes and minimize their impacts on project schedule and budget. Among the relative weights of the identified factors, prefabrication of building components was found to have the highest effect on constructability. Furthermore, applying the developed VR-CI, a real project showed that the utility values of the main factors quantified on a ten-point scale were between 6 and 9, which means routine supervisions and monitoring are required.

Originality/value

Though the concepts of constructability and VR have been used in different contexts, their integration to develop a comprehensive CI for the building construction industry is a unique contribution, which has not been reported previously.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 July 2023

Pratik Maheshwari, Sachin Kamble, Satish Kumar, Amine Belhadi and Shivam Gupta

The digital warehouse management system is an emergence that forms a critical part of the transformation of economic structure in Industry 4.0. In the present business scenario…

1360

Abstract

Purpose

The digital warehouse management system is an emergence that forms a critical part of the transformation of economic structure in Industry 4.0. In the present business scenario, the warehouse management system encounters a messy layout, poor damage control, unsatisfactory order management, lack of visibility and lack of technological interventions. Digital twin (DT) based warehouse system shows the ontology and knowledge graphs for competitive advantage by consolidating and transferring goods directly from an inbound supplier to an outbound customer on short notice and with no or limited storage. There remains a lack of clarity on how the DT can be implemented successfully in warehouse management.

Design/methodology/approach

The current literature remains largely unstructured and scattered due to a lack of a systematic approach to integrating the research implications and analysis. This paper probes the conceptualization of the DT with the help of theoretical analysis using the systematic literature analysis method.

Findings

The study explores essential concepts such as interoperability and integrability in implementing DT. Further, it analyzes the role of a supply chain control tower (SCCT) in modern supply chain management. A research framework is proposed for practitioners and academicians by incorporating the opportunities and challenges associated with DT implementation. The research findings are mainly threefold: Conceptualization of DT, Featuring SCCT and Exploration of cross-computer platform interfaces, scalability and maintenance strategies.

Originality/value

This study is among the first to analyze and review DT applications in warehouse management. Moreover, the study proposes a theoretical toolbox for the practitioners to successfully implement the DT in warehouse DT-based warehouse management system: A theoretical toolbox for future research and applications.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 9 May 2022

Kevin Wang and Peter Alexander Muennig

The study explores how Taiwan’s electronic health data systems can be used to build algorithms that reduce or eliminate medical errors and to advance precision medicine.

1772

Abstract

Purpose

The study explores how Taiwan’s electronic health data systems can be used to build algorithms that reduce or eliminate medical errors and to advance precision medicine.

Design/methodology/approach

This study is a narrative review of the literature.

Findings

The body of medical knowledge has grown far too large for human clinicians to parse. In theory, electronic health records could augment clinical decision-making with electronic clinical decision support systems (CDSSs). However, computer scientists and clinicians have made remarkably little progress in building CDSSs, because health data tend to be siloed across many different systems that are not interoperable and cannot be linked using common identifiers. As a result, medicine in the USA is often practiced inconsistently with poor adherence to the best preventive and clinical practices. Poor information technology infrastructure contributes to medical errors and waste, resulting in suboptimal care and tens of thousands of premature deaths every year. Taiwan’s national health system, in contrast, is underpinned by a coordinated system of electronic data systems but remains underutilized. In this paper, the authors present a theoretical path toward developing artificial intelligence (AI)-driven CDSS systems using Taiwan’s National Health Insurance Research Database. Such a system could in theory not only optimize care and prevent clinical errors but also empower patients to track their progress in achieving their personal health goals.

Originality/value

While research teams have previously built AI systems with limited applications, this study provides a framework for building global AI-based CDSS systems using one of the world’s few unified electronic health data systems.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 925