Search results

1 – 10 of over 1000

Abstract

Details

Putting the Genie Back
Type: Book
ISBN: 978-1-78714-447-7

Article
Publication date: 15 May 2018

Osama A.B. Hassan and Christopher Johansson

This paper aims to compare glued laminated timber and steel beams with respect to structural design, manufacturing and assembly costs and the amount of greenhouse gas emissions.

1322

Abstract

Purpose

This paper aims to compare glued laminated timber and steel beams with respect to structural design, manufacturing and assembly costs and the amount of greenhouse gas emissions.

Design/methodology/approach

This paper presents structural design requirements in conformance with EN 1993: Eurocode 5 and Eurocode 3. With the help of these standards, expressions are derived to evaluate the design criteria of the beams. Based on the results of life-cycle analysis, the economic properties and environmental impact of the two types of beam are investigated. In this paper, the effect of beam span on the design values, costs and carbon dioxide emissions is analysed when investigating aspects of the structural design, economy and environmental impact. Different cross-sections are chosen for this purpose.

Findings

The study shows that the glued laminated (abbreviated as “glulam”) beams have a smaller tendency to lateral torsional buckling than the steel beams, and that they can be cheaper. From an environmental point of view, glulam beams are the more environmentally friendly option of the two beam materials. Furthermore, glulam beams may have a direct positive effect on the environment, considering the carbon storage capacity of the wood. The disadvantage of glued wood is that larger dimensions are sometimes required.

Research limitations/implications

Wind load and the effect of second-order effects have not been considered when analysing the static design. Only straight beams have been studied. Furthermore, the dynamic design of the beams has not been investigated, and the bearing pressure capacity of the supports has not been analyzed. We have investigated timber beams with a rectangular cross-section, and steel beams of rolled I-sections, known as “HEA profiles”. The cost analysis is based mainly on the manufacturing and assembly costs prevalent on the Swedish market. The only environmental impact investigated has been the emission of greenhouse gases. The design calculations are based on the European standards Eurocode 5 and Eurocode 3.

Practical implications

To achieve sustainability in construction engineering, it is important to study the environmental and economic consequences of the building elements. By combining these two effects with the technical design of buildings made of steel and/or timber, the concept of sustainable development can be achieved in the long run.

Social implications

The study concerns sustainability of building structures, which is an important of the sustainable development of the society.

Originality/value

The paper contains new information and will be useful to researchers and civil engineers.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 May 2021

Pierre van Tonder and Malcolm Shaun Low

There is an increase in greenhouse gasses and global climate change is frequently reported on. What can be done? Certainly to try and reduce the carbon footprint, which is not a…

253

Abstract

Purpose

There is an increase in greenhouse gasses and global climate change is frequently reported on. What can be done? Certainly to try and reduce the carbon footprint, which is not a new topic, by encouraging applications and activities for concrete during its lifetime (Portland Cement Association, 2019). This study aims to focus on introducing CO2 to normal and fly ash concrete and thus investigating the effect on the carbon footprint of the samples and the effectiveness of the CO2 introduction methods, namely, carbonated water addition during the mixing process and by means of an infusion pipe directly into the concrete when the samples are casted and have been casted.

Design/methodology/approach

The feasibility of carbon dioxide storage within concrete is determined by investigating the effects of introduced carbon dioxide into concrete samples and the effectiveness of the concrete at storing carbon dioxide. The concrete was mixed in a 1:3:3 ratio for the OPC or blended 52.5 R cement:sand:stone (22 mm) with a 28 day strength of 50 MPa. Samples were also prepared containing low-grade fly ash cement contents ranging from 15% to 60%. CO2 was introduced to the concrete via carbonated mixing water and an infusion pipe system directly to the hardening concrete cubes. In total, 16 g CO2 bicycle carbon dioxide inflators and valve system were used to infuse the concrete over a period of a week until the canister was emptied with valve release on the lowest setting. A compression test was carried out to determine the strength of the concrete cubes with, and without, the introduction of carbon dioxide. Results were also obtained using a scanning electron microscope (SEM) and energy dispersive x-ray spectrometer (EDS) to determine how the carbon dioxide changed the microscopic composition and chemical composition of the concrete. A microcontroller with carbon dioxide sensors was used to gather carbon dioxide emission data for a period of three months.

Findings

The compressive strength tests show by introducing carbon dioxide to the concrete, the compressive strength has increased by as much as 13.86% as expected from the literature. Furthermore, by infusing carbon dioxide with the fly ash blended cement, will give a higher strength compared to the control with ordinary portland cement. This correlates to an overall reduction in cost for the structure. The optimal fly ash content for the control with minimal strength degradation is 30%. Where the optimal fly ash content for the concrete with carbon dioxide stored within, is 45%. The SEM analysis showed the concrete with sequestered carbon dioxide has significantly more calcium silicate hydrate (C-S-H) gel formation, thus the strength increase. Furthermore, the carbon dioxide emission test showed the concrete with infused carbon dioxide stores carbon dioxide more efficiently compared to the control sample. With the data showing the infused sample releases 11.19% less carbon dioxide compared to the control sample. However, the carbonated water sample releases 20.9% more carbon dioxide when compared to the control sample. Thus the introduction of carbon dioxide by means of infusion is more effective.

Practical implications

This is a practical pilot investigation of carbon dioxide introduction via two methods, one being infusion of CO2 into normal concrete and fly ash concrete and two, mixing normal and fly ash concrete with carbonated water. These results show, cheaper cement can be used to achieve equivalent or better strength. This can help in the reduction of the construction industry’s carbon footprint.

Originality/value

By reducing the construction industry’s carbon footprint with this research results, a saving can not only be made financially in the construction industry, but this will help to preserve our environment for future generations.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 31 December 2010

Min-Jung Kim, Seock-Jin Hong and Hun-Koo Ha

This study estimated greenhouse gas emissions from aviation transportation and sought systems that could manage these emissions based on the IPCC guidelines to prepare for…

Abstract

This study estimated greenhouse gas emissions from aviation transportation and sought systems that could manage these emissions based on the IPCC guidelines to prepare for greenhouse gas regulations on international airlines. For this purpose, policies to reduce greenhouse gas emissions from aviation transportation were developed based on international agreements and the cases of advanced countries. In addition, marginal abatement costs and greenhouse gas reduction measures were derived for the effective execution of these policies. While estimating greenhouse gas emissions from aviation transportation, it was found that there has been an average increase of 3.9% and 12.9% for domestic and international flights, indicating that it is urgent that we prepare global greenhouse gas regulations. The estimated marginal abatement cost of greenhouse gas from airplanes was approximately. USD 123, and this amount could be used to decide the price of emission rights, the amount of carbon tax, and could be referred to when distributing incentives for voluntary agreements.

The measures to reduce greenhouse gas emissions for aviation transportation were classified into four types: voluntary agreements, international collaboration, greenhouse gas reduction technology and operation process development, and application of emission trading and carbon tax.

Details

Journal of International Logistics and Trade, vol. 8 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Article
Publication date: 6 December 2021

Saman Esmaeilian, Dariush Mohamadi, Majid Esmaelian and Mostafa Ebrahimpour

This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits.

Abstract

Purpose

This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits.

Design/methodology/approach

The present study develops a mathematical model for a closed-loop supply chain network of perishable products so that considers the vital aspects of sustainability across the life cycle of the supply chain network. To evaluate carbon emissions, two different regulating policies are studied.

Findings

According to the obtained results, increasing the lifetime of the perishable products improves the incorporated objective function (IOF) in both the carbon cap-and-trade model and the model with a strict cap on carbon emission while the solving time increases in both models. Moreover, the computational efficiency of the carbon cap-and-trade model is higher than that of the model with a strict cap, but its value of the IOF is worse. Results indicate that efficient policies for carbon management will support planners to achieve sustainability in a cost-effectively manner.

Originality/value

This research proposes a mathematical model for the sustainable closed-loop supply chain of perishable products that applies the significant aspects of sustainability across the life cycle of the supply chain network. Regional economic value, regional development, unemployment rate and the number of job opportunities created in the regions are considered as the social dimension.

Book part
Publication date: 13 June 2017

David Hone

Abstract

Details

Putting the Genie Back
Type: Book
ISBN: 978-1-78714-447-7

Article
Publication date: 6 January 2021

Sa’d Shannak and Artem Malov

This paper aims to discuss opportunities for pairing the carbon dioxide (CO2) points of supply from stationary sources such as power plants, steel and cement production, coal to…

Abstract

Purpose

This paper aims to discuss opportunities for pairing the carbon dioxide (CO2) points of supply from stationary sources such as power plants, steel and cement production, coal to liquid plants and refineries, with potential oil reservoirs in China.

Design/methodology/approach

This study builds a linear optimization model to analyze the tradeoffs in developing CO2-enhance oil recovery (EOR) projects in China for a range of policy options to match points of supply with the points of demand (oil fields). The model works on optimizing CO2 application costs by meeting four principal components; CO2 storage, CO2 capture, transport costs and additional oil recovery.

Findings

This study reveals new opportunities and economic sources to feed CO2-EOR applications and offers reasonable options to supply CO2 for potential points of demand. Furthermore, power plants and coal to liquid industries had the most significant and economic contributions to potential CO2-EOR projects in China. Total annual emission reduction is expected to be 10% (based on 10 Gton annual emissions). The emission reductions and potential CO2 storage from the different industries as follow; 94% from power plants, 4% from biofuel and 2% from coal to liquid plants.

Social implications

Carbon capture and storage (CCS) is one practice aiming to reduce the amounts of anthropogenic emissions of carbon dioxide emitted into the atmosphere and reduce the related social costs. However, given the relatively high cost associated with this practice, coupling it with EOR could offer a significant financial incentive to facilitate the development of CCS projects and meet climate change objectives.

Originality/value

The model used in this study can be straightforwardly adapted to any geographic location where industry and policymakers are looking to simultaneously reduce CO2 emissions while increasing hydrocarbon recovery. The model is highly adaptable to local values in the parameters considered and to include additional local considerations such as geographic variation in capture costs, taxes and premiums to be placed on CO2 capture in so-called “non-attainment zones” where pollution capture make could make a project politically and economically viable. Regardless of how and where this model is applied, it is apparent that CO2 from industrial sources has substantial potential value as a coproduct that offsets its sequestration costs using existing, commercially available CO2-EOR technology, once sources and sinks are optimally paired.

Details

Journal of Science and Technology Policy Management, vol. 12 no. 1
Type: Research Article
ISSN: 2053-4620

Keywords

Book part
Publication date: 19 April 2022

Petchprakai Sirilertsuwan

This chapter shows how different recycling locations influence closed-loop supply chain (CLSC) cost and carbon dioxide equivalents (CO2e), as well as reveal competitive recycling…

Abstract

This chapter shows how different recycling locations influence closed-loop supply chain (CLSC) cost and carbon dioxide equivalents (CO2e), as well as reveal competitive recycling and manufacturing locations, including relevant distance- and location-related factors, for achieving very low cost and CO2e CLSCs supporting circular economy. Exploratory data analysis is used to analyze results from simulations based on empirical data and market rates relating to textile and clothing CLSCs. The results show that most very low-cost and CO2e CLSCs consist of fabric and garment manufacturing located at the same or nearby locations, and whose labor costs and electricity CO2e are low, whether fiber recycling facilities are located in proximity to used garment sorting facilities or not. Scenario and sensitivity analyses of important cost and CO2e factors for recycling location competitiveness reveal that increasing used garment prices makes locations with high import duties lose competitiveness, and that varying water freight CO2e changes comparative location competitiveness.

Abstract

Details

Energy Economics
Type: Book
ISBN: 978-1-83867-294-2

1 – 10 of over 1000