Search results

1 – 10 of 164
Article
Publication date: 9 January 2024

Mahendra Saha, Pratibha Pareek, Harsh Tripathi and Anju Devi

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of…

Abstract

Purpose

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of the proposed attribute control chart which depends on the average run length (ARL) and third is to include real life examples for application purpose of the proposed attribute control chart.

Design/methodology/approach

(1) Select a random sample of size n from each subgroup from the production process and put them on a test for specified time t, where t = ? × µe. Then, count the numbers of failed items in each subgroup up to time t. (2) Step 2: Using np chart, define D = np, the number of failures, which also a random variable follows the Binomial distribution. It is better to use D = np chart rather than p chart because the authors are using number of failure rather than proportion of failure p. When the process is in control, then the parameters of the binomial distribution are n and p0, respectively. (3) Step 3: The process is said to be in control if LCL = D = UCL; otherwise, the process is said to be out of control. Hence, LCL and UCL for the proposed control chart.

Findings

From the findings, it is concluded that the GRD has smaller ARL values than the RD for specified values of parameters, which indicate that GRD performing well for out of control signal as compared to the RD.

Research limitations/implications

This developed control chart is applicable when real life situation coincide with RD and GRD.

Social implications

Researcher can directly use presented study and save consumers from accepting bad lot and also encourage producers to make good quality products so that society can take benefit from their products.

Originality/value

This article dealt with time truncated attribute median control chart for non-normal distributions, namely, the RD and GRD, respectively. The structure of the proposed control chart is developed based on median lifetime of the RD and GRD, respectively.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 3 April 2024

Tatiana da Costa Reis Moreira, Daniel Luiz de Mattos Nascimento, Yelena Smirnova and Ana Carla de Souza Gomes dos Santos

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for…

Abstract

Purpose

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for employee occupational exams and address the real-world issue of high-variability exams that may arise.

Design/methodology/approach

This study uses mixed methods, combining qualitative and quantitative data collection. A detailed case study assesses the impact of LSS interventions on the exam management process and tests the applicability of the proposed LSS 4.0 framework for employee occupational exams.

Findings

The results reveal that changing the health service supplier in the explored organization caused a substantial raise in occupational exams, leading to increased costs. By using syntactic interoperability, lean, six sigma and DMAIC approaches, improvements were identified, addressing process deviations and information requirements. Implementing corrective actions improved the exam process, reducing the number of exams and associated expenses.

Research limitations/implications

It is important to acknowledge certain limitations, such as the specific context of the case study and the exclusion of certain exam categories.

Practical implications

The practical implications of this research are substantial, providing organizations with valuable managerial insights into improving efficiency, reducing costs and ensuring regulatory compliance while managing occupational exams.

Originality/value

This study fills a research gap by applying LSS 4.0 to occupational exam management, offering a practical framework for organizations. It contributes to the existing knowledge base by addressing a relatively novel context and providing a detailed roadmap for process optimization.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 16 April 2024

Rahadian Haryo Bayu Sejati, Dermawan Wibisono and Akbar Adhiutama

This paper aims to design a hybrid model of knowledge-based performance management system (KBPMS) for facilitating Lean Six-Sigma (L6s) application to increase contractor…

Abstract

Purpose

This paper aims to design a hybrid model of knowledge-based performance management system (KBPMS) for facilitating Lean Six-Sigma (L6s) application to increase contractor productivity without compromising human safety in Indonesian upstream oil field operations that manage ageing and life extension (ALE) facilities.

Design/methodology/approach

The research design applies a pragmatic paradigm by employing action research strategy with qualitative-quantitative methodology involving 385 of 1,533 workers. The KBPMS-L6s conceptual framework is developed and enriched with the Analytical Hierarchy Process (AHP) to prioritize fit-for-purpose Key Performance Indicators. The application of L6s with Human Performance Modes analysis is used to provide a statistical baseline approach for pre-assessment of the contractor’s organizational capabilities. A comprehensive literature review is given for the main pillars of the contextual framework.

Findings

The KBPMS-L6s concept has given an improved hierarchy for strategic and operational levels to achieve a performance benchmark to manage ALE facilities in Indonesian upstream oil field operations. To increase quality management practices in managing ALE facilities, the L6s application requires an assessment of the organizational capability of contractors and an analysis of Human Performance Modes (HPM) to identify levels of construction workers’ productivity based on human competency and safety awareness that have never been done in this field.

Research limitations/implications

The action research will only focus on the contractors’ productivity and safety performances that are managed by infrastructure maintenance programs for managing integrity of ALE facilities in Indonesian upstream of oil field operations. Future research could go toward validating this approach in other sectors.

Practical implications

This paper discusses the implications of developing the hybrid KBPMS- L6s enriched with AHP methodology and the application of HPM analysis to achieve a 14% reduction in inefficient working time, a 28% reduction in supervision costs, a 15% reduction in schedule completion delays, and a 78% reduction in safety incident rates of Total Recordable Incident Rate (TRIR), Days Away Restricted or Job Transfer (DART) and Motor Vehicle Crash (MVC), as evidence of achieving fit-for-purpose KPIs with safer, better, faster, and at lower costs.

Social implications

This paper does not discuss social implications

Originality/value

This paper successfully demonstrates a novel use of Knowledge-Based system with the integration AHP and HPM analysis to develop a hybrid KBPMS-L6s concept that successfully increases contractor productivity without compromising human safety performance while implementing ALE facility infrastructure maintenance program in upstream oil field operations.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2024

Min Wan, Mou Chen and Mihai Lungu

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty…

Abstract

Purpose

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty, external disturbances and sensor faults, using the prescribed performance method.

Design/methodology/approach

To ensure that the tracking error satisfies the prescribed performance, the authors adopt an error transformation function method. A control scheme based on the neural network and high-order disturbance observer is designed to guarantee the boundedness of the closed-loop system. A simulation is performed to prove the validity of the control scheme.

Findings

The developed adaptive fault-tolerant control method makes the system with sensor fault realize tracking control. The error transformation function method can effectively handle the prescribed performance requirements. Sensor fault can be regarded as a type of system uncertainty. The uncertainty can be approximated accurately using neural networks. A high-order disturbance observer can effectively suppress compound disturbances.

Originality/value

The tracking performance requirements of unmanned autonomous helicopter system are considered in the design of sensor fault-tolerant control. The inequality constraint that the output tracking error must satisfy is transformed into an unconstrained problem by introducing an error transformation function. The fault state of the velocity sensor is considered as the system uncertainty, and a neural network is used to approach the total uncertainty. Neural network estimation errors and external disturbances are treated as compound disturbances, and a high-order disturbance observer is constructed to compensate for them.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 September 2021

Amna Farrukh, Sanjay Mathrani and Aymen Sajjad

Despite differing strategies towards environmental sustainability in developed and developing nations, the manufacturing sector in these regional domains faces substantial…

Abstract

Purpose

Despite differing strategies towards environmental sustainability in developed and developing nations, the manufacturing sector in these regional domains faces substantial environmental issues. The purpose of this study is to examine the green-lean-six sigma (GLSS) enablers and outcomes for enhancing environmental sustainability of manufacturing firms in both, a developed and developing country context by using an environment-centric natural resource-based view (NRBV).

Design/methodology/approach

First, a framework of GLSS enablers and outcomes aligned with the NRBV strategic capabilities is proposed through a systematic literature review. Second, this framework is used to empirically investigate the GLSS enablers and outcomes of manufacturing firms through in-depth interviews with lean six sigma and environmental consultants from New Zealand (NZ) and Pakistan (PK) (developed and developing nations).

Findings

Analysis from both regional domains highlights the use of GLSS enablers and outcomes under different NRBV capabilities of pollution prevention, product stewardship and sustainable development. A comparison reveals that NZ firms practice GLSS to comply with environmental regulatory requirements, avoid penalties and maintain their clean-green image. Conversely, Pakistani firms execute GLSS to reduce energy use, satisfy international customers and create a green image.

Practical implications

This paper provides new insights on GLSS for environmental sustainability which can assist industrial experts and academia for future strategies and research.

Originality/value

This is one of the early comparative studies that has used the NRBV to investigate GLSS enablers and outcomes in manufacturing firms for enhancing environmental performance comparing developed and developing nations

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 3 March 2023

Amy B.C. Tan, Desirée H. van Dun and Celeste P.M. Wilderom

With the growing need for employees to be innovative, public-sector organizations are investing in employee training. This study aims to examine the effects of a combined Lean Six…

4208

Abstract

Purpose

With the growing need for employees to be innovative, public-sector organizations are investing in employee training. This study aims to examine the effects of a combined Lean Six Sigma and innovation training, using action learning, on public-sector employees’ creative role identity and innovative work behavior.

Design/methodology/approach

The authors studied a public service agency in Singapore in which a five-day Lean Innovation Training was implemented, using a combination of Lean Six Sigma and Creative Problem-Solving tools, with a simulation on day one and subsequent team-based project coaching, spread over six months. The authors administered pre- and postintervention surveys among all the employees, and initiated group interviews and observations before, during and after the intervention.

Findings

Creative role identity and innovative work behavior had significantly improved six months after the intervention, enabled through senior management’s transformational leadership. The training induced managers to role-model innovative work behaviors while cocreating, with their employees, a renewal of their agency’s core processes. The three completed improvement projects contributed to an innovative work culture and reduced service turnaround time.

Originality/value

Starting with a role-playing simulation on the first day, during which leaders and followers swapped roles, the action-learning type training taught all the organizational members to use various Lean Six Sigma and Creative Problem-Solving tools. This nimble Lean Innovation Training, and subsequent team-based project coaching, exemplifies how advancing the staff’s creative role identity can have a positive impact.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 8 December 2023

Fábio de Oliveira Neves, Eduardo Gomes Salgado, Henrique Ewbank and Paulo Sampaio

Industrialization is a major contributor to pollution and the worsening of some social problems. A change in this context would help in a new industrial model aiming at a viable…

Abstract

Purpose

Industrialization is a major contributor to pollution and the worsening of some social problems. A change in this context would help in a new industrial model aiming at a viable and sustainable manufacturing system. This research aims to verify the state of the art of sustainability within the industrial production process through a systematic literature review, verifying the main characteristics in relation to industrial sustainability that the literature demonstrates.

Design/methodology/approach

The development of the research took place in three stages: a survey of articles with Journal Citation Reports (JCR), the construction of the database and descriptive analysis and text mining analyses of social networks and content. The survey took place through academically endorsed research platforms, totaling a total of 352 scientific articles, which included 18 quality management tools and worked with at least one sustainability indicator (financial, social and environmental).

Findings

Lean manufacturing, integrated management system and Six Sigma were the most cited quality tools, and articles containing the three indicators were found more frequently. It was found that most authors treated sustainability only as an environmental contribution. Knowledge of the organization's structural and management issues is essential for implementing sustainability and production process improvement.

Originality/value

This work is the first to develop a systematic analysis regarding the use of sustainability implementation in the industrial production process, considering a wide scope of production process tools, guiding on the characteristics of sustainability relating to the main critical success factors (CSFs), motivations, difficulties and benefits that lead industries in different parts of the world to implement sustainability.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 November 2023

M. Sankara Narayanan, P. Jeyadurga and S. Balamurali

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life…

Abstract

Purpose

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life for the products under the new Weibull–Pareto distribution. The economic design of the proposed plan is also considered to assure the product's lifetime with minimum cost.

Design/methodology/approach

The authors have developed an optimization model for obtaining the required plan parameters by solving simultaneously two non-linear inequalities and such inequalities have been formed based on the two points on the operating characteristic curve approach.

Findings

The results show that the average sample number, average total inspection and total inspection cost under the proposed plan are smaller than the same of a single sampling plan. This means that the proposed plan will be more efficient than a single sampling plan in reducing inspection effort and cost while providing the desired protection.

Originality/value

The proposed modified double sampling plan designed to assure the median life of the products under the new Weibull–Pareto distribution is not available in the literature. The proposed plan will be very useful in assuring the product median lifetime with minimum sample size as well as minimum cost in all the manufacturing industries.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 11 July 2023

Oscar Y. Moreno Rocha, Paula Pinto, Maria C. Consuegra, Sebastian Cifuentes and Jorge H. Ulloa

This study aims to facilitate access to vascular disease screening for low-income individuals living in remote and conflict areas based on the results of a pilot trial in…

Abstract

Purpose

This study aims to facilitate access to vascular disease screening for low-income individuals living in remote and conflict areas based on the results of a pilot trial in Colombia. Also, to increase the amount of diagnosis training of vascular surgery (VS) in civilians.

Design/methodology/approach

The operation method includes five stages: strategy development and adjustment; translation of the strategy into a real-world setting; operation logistics planning; strategy analysis and adoption. The operation plan worked efficiently in this study’s sample. It demonstrated high sensibility, efficiency and safety in a real-world setting.

Findings

The authors developed and implemented a flow model operating plan for screening vascular pathologies in low-income patients pro bono without proper access to vascular health care. A total of 140 patients from rural areas in Colombia were recruited to a controlled screening session where they underwent serial noninvasive ultrasound assessments conducted by health professionals of different training stages in VS.

Research limitations/implications

The plan was designed to be implemented in remote, conflict areas with limited access to VS care. Vascular injuries are critically important and common among civilians and military forces in regions with active armed conflicts. As this strategy can be modified and adapted to different medical specialties and geographic areas, the authors recommend checking the related legislation and legal aspects of the intended areas where we will implement this tool.

Practical implications

Different sub-specialties can implement the described method to be translated into significant areas of medicine, as the authors can adjust the deployment and execution for the assessment in peripheral areas, conflict zones and other public health crises that require a faster response. This is necessary, as the amount of training to which VS trainees are exposed is low. A simulated exercise offers a novel opportunity to enhance their current diagnostic skills using ultrasound in a controlled environment.

Social implications

Evaluating and assessing patients with limited access to vascular medicine and other specialties can decrease the burden of vascular disease and related complications and increase the number of treatments available for remote communities.

Originality/value

It is essential to assess the most significant number of patients and treat them according to their triage designation. This management is similar to assessment in remote areas without access to a proper VS consult. The authors were able to determine, classify and redirect to therapeutic interventions the patients with positive findings in remote areas with a fast deployment methodology in VS.

Plain language summary

Access to health care is limited due to multiple barriers and the assessment and response, especially in peripheral areas that require a highly skilled team of medical professionals and related equipment. The authors tested a novel mobile assessment tool for remote and conflict areas in a rural zone of Colombia.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

1 – 10 of 164