Search results

1 – 10 of over 1000
Article
Publication date: 1 January 1995

K. Gilleo

The electronics assembly industry has fortunately rediscovered conductive adhesives as the search for lead‐free joining materials and improved performance intensifies. Although…

Abstract

The electronics assembly industry has fortunately rediscovered conductive adhesives as the search for lead‐free joining materials and improved performance intensifies. Although these intrinsically clean bonding agents are often first sought for their favourable environmental attributes, many are surprised to find that conductive adhesives can solve old and new problems. Today, new polymer solders for SMT allow low temperature processing, finer pitch assembly and wider processing latitude while providing compatibility with a very much larger range of materials than solder. State‐of‐the‐art adhesives are oxide‐tolerant and absolutely no fluxing or cleaning is required. Adhesives work where solder cannot be used. What's more, polymer‐based solder alternatives can run on existing SMT lines — no new equipment is needed. Z‐axis, or anisotropic, bonding agents are uni‐directional conductive materials that solve fine pitch interconnect problems in several areas. The anisotropics now dominate the flat panel interconnect field. Nearly every LCD and other flat panel display is connected with a polymer adhesive. The Z‐axis adhesives are also beginning to enable high density multilayer circuits and MCMs to be built more effectively. Finally, Z‐axis appears to offer the simplest and most cost‐effective means for flip chip bonding. However, special equipment is required. The paper compares the metallurgical solder joint, the present de facto standard, with the polymer composite bond to highlight similarities and important differences. All types of conductive adhesives are discussed including the latest — Area Array Z‐axis types. Bonding materials, assembly processes and performance are also covered.

Details

Soldering & Surface Mount Technology, vol. 7 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 January 2014

Haibao Lu, Yongtao Yao and Long Lin

This article aims to present a systematic and up-to-date account of carbon-based reinforcements, including carbon nanotube (CNT), carbon nanofibre (CNF), carbon black (CB), carbon…

1633

Abstract

Purpose

This article aims to present a systematic and up-to-date account of carbon-based reinforcements, including carbon nanotube (CNT), carbon nanofibre (CNF), carbon black (CB), carbon fibre (CF) and grapheme, in shape-memory polymer (SMP) for electrical actuation.

Design/methodology/approach

Studies exploring carbon-based reinforcement in SMP composites for electrically conductive performance and Joule heating triggered shape recovery have been included, especially for the principle design, characterisation and shape recovery behaviour, making the article a comprehensive account of the systemic progress in SMP composite incorporating conductive carbon reinforcement.

Findings

SMPs are fascinating materials and have attracted great academic and industrial attention owing to their significant macroscopic shape deformation in the presence of an appropriate stimulus. The working mechanisms, the physico requirements and the theoretical origins of the different types of carbon-based reinforcement SMP composites have been discussed. Current research and development on the fabrication strategies of carbon-based reinforcement SMP composites have been summarised.

Research limitations/implications

A systematic review is to evaluate carbon-based reinforcements in SMPs for electrical actuation and discuss recent developments and future applications.

Practical implications

Carbon-based reinforcements in SMPs can be used as smart deployable space structure in the broad field of aerospace technologies.

Originality/value

To reveal the research and development of utilising CNT, CNF, CB, CF and grapheme to achieve shape recovery of SMP composites through electrically resistive heating, which will significantly benefit the research and development of smart materials and systems.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 1997

P. Gandhi

In recent years, electronicdevices have increasingly employed printed circuits produced using electrically conductiveadhesives, commonly known as polymer thick films. This method…

227

Abstract

In recent years, electronic devices have increasingly employed printed circuits produced using electrically conductive adhesives, commonly known as polymer thick films. This method is much more cost‐effective and efficient than other methods of wiring, including those using chemical etching or plating. In the past, the use of metal‐filled polymers as conductors in printed circuit fabrication has suffered from several limitations such as poor solderability, conductivity and adhesion. A new electrically conductive metal‐filled polymer formulation has been developed which overcomes these problems inherent in typical polymer thick film inks. This new product is based on transient liquid‐phase sintering wherein the metallic components of the formulation sinter at a relatively low temperature, resulting in a highly conductive continuous metal network. The sintering is achieved through the interaction of several metallic components with an adhesive‐flux component. The final product is highly conductive, solderable and exhibits excellent adhesion to a wide range of substrate materials. A new process for manufacturing fine‐line printed circuit boards using this ink technology is under investigation. It promises potentially simpler processing and lower cost than plating. In this new process, traces (in the form of troughs in the dielectric) are imaged using conventional photoimageable dielectrics. Exposure and developing conditions depend upon the polymer system used. The transient liquid phase sinterable conductive ink is applied to fill the photo‐exposed conductor pattern. Next, another layer of photoimageable dielectric is applied over the traces and imaged with vias for interconnections with subsequent layers. The dielectric is then cured and the ink applied to fill the vias. These steps may be repeated several times to produce low‐profile fine‐line multilayer printed circuits. This process for producing multilayer circuits using conductive inks simplifies the manufacturing of printed circuits, reduces profile, eliminates most waste in manufacturing, and reduces cost compared with plating.

Details

Circuit World, vol. 23 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 November 2012

Gerard Cummins and Marc P.Y. Desmulliez

The purpose of this paper is to present an exhaustive review of research studies and activities in the inkjet printing of conductive materials.

8924

Abstract

Purpose

The purpose of this paper is to present an exhaustive review of research studies and activities in the inkjet printing of conductive materials.

Design/methodology/approach

This paper gives a detailed literature survey of research carried out in inkjet printing of conductive materials.

Findings

This article explains the inkjet printing process and the various types of conductive inks. It then examines the various factors that affect the quality of inkjet printed interconnects such as printing parameters, materials and substrate treatments. Methods of characterising both the inkjet printing process and the electrical properties of printed conductive materials are also presented. Finally relevant applications of this technology are described.

Originality/value

Inkjet printing is currently one of the cheapest direct write techniques for manufacturing. The use of this technique in electronic manufacturing, where interconnects and other conductive features are required is an area of increasing relevance to the fields of electronics manufacturing, packaging and assembly. This review paper would therefore be of great value and interest to this community.

Article
Publication date: 1 February 2016

Damian Nowak, Andrzej Dziedzic, Zbigniew Żaluk, Henryk Roguszczak and Mariusz Węglarski

– The paper aims to investigate on the mechanical properties of surface-mount device (SMD) interconnections made on flexible and rigid substrates.

Abstract

Purpose

The paper aims to investigate on the mechanical properties of surface-mount device (SMD) interconnections made on flexible and rigid substrates.

Design/methodology/approach

The durability of joints to shear strength was measured with tensile machine. Investigations were carried out for 0402- and 0603-sized ceramic passives and integrated circuits in SOIC-8, TSSOP-8, XSON3 and XSON6 packages. Three types of flexible substrates (Kapton, Mylar and Pyralux) and two types of rigid substrates (LTCC and alumina) were used. SMD components were mounted with SAC solder or electrically conductive adhesive. Contact pads were made of Ag-based polymer paste on flexible substrates and PdAg-based cermet paste on ceramics. The shear strength was measured for as-made and long-term thermally aged test structures. The average durability and standard deviation were compared for different combination of materials. Moreover, mechanical properties of interconnections made of polymer thick-film pastes or electrically/thermally conductive adhesives between ceramic chips and flexible/ceramic substrates were investigated.

Findings

The mechanical properties of joints strongly depend on configuration of applied materials. Some of them exhibit high durability to shear strength, while other should not be recommended due to very weak connections. Additionally, long-term thermal ageing showed that exploitation of such connections at elevated temperature in some cases might increase their strength. However, for some materials, it leads to accelerated degradation of joints.

Originality/value

This paper provides practical information about SMD interconnections made with standard materials (lead-free solder, electrically/thermally conductive adhesives) and proposed non-standard procedures, e.g. assembling of ceramic chips with low temperature cermet or polymer thick-film conductive pastes.

Details

Soldering & Surface Mount Technology, vol. 28 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 January 2020

Sathies T., Senthil P. and Anoop M.S.

Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of…

1494

Abstract

Purpose

Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of additive manufacturing (AM) comes into existence and fused deposition modelling (FDM), is at the forefront of researches related to polymer-based additive manufacturing. The purpose of this paper is to summarize the research works carried on the applications of FDM.

Design/methodology/approach

In the present paper, an extensive review has been performed related to major application areas (such as a sensor, shielding, scaffolding, drug delivery devices, microfluidic devices, rapid tooling, four-dimensional printing, automotive and aerospace, prosthetics and orthosis, fashion and architecture) where FDM has been tested. Finally, a roadmap for future research work in the FDM application has been discussed. As an example for future research scope, a case study on the usage of FDM printed ABS-carbon black composite for solvent sensing is demonstrated.

Findings

The printability of composite filament through FDM enhanced its application range. Sensors developed using FDM incurs a low cost and produces a result comparable to those conventional techniques. EMI shielding manufactured by FDM is light and non-oxidative. Biodegradable and biocompatible scaffolds of complex shapes are possible to manufacture by FDM. Further, FDM enables the fabrication of on-demand and customized prosthetics and orthosis. Tooling time and cost involved in the manufacturing of low volume customized products are reduced by FDM based rapid tooling technique. Results of the solvent sensing case study indicate that three-dimensional printed conductive polymer composites can sense different solvents. The sensors with a lower thickness (0.6 mm) exhibit better sensitivity.

Originality/value

This paper outlines the capabilities of FDM and provides information to the user about the different applications possible with FDM.

Details

Rapid Prototyping Journal, vol. 26 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 1996

R. Cross

The use of thermally conductive adhesives tobond heat generating devices to heat sinks is an alternative production method for thermalmanagement. It is of interest to be able…

232

Abstract

The use of thermally conductive adhesives to bond heat generating devices to heat sinks is an alternative production method for thermal management. It is of interest to be able to predict the thermal conductivity of an adhesive based on composition and rheology. A semi‐empirical model, for predicting the thermal conductivity of binary mixtures can be enhanced by taking into account filler interactions which affect the rheological profile of the system. Combinations of thermally conductive fillers, which can form structure within the polymer matrix, are shown to offer higher thermal conductivity. The Lewis and Nielsen model, can be used to predict the thermal conductivity of structured matrices by relating the rheology of the system to the effective aspect ratio of the filler particle.

Details

Microelectronics International, vol. 13 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 January 2018

Hongsheng Luo, Xingdong Zhou, Yuncheng Xu, Huaquan Wang, Yongtao Yao, Guobin Yi and Zhifeng Hao

This paper aims to exploit shape-memory polymers as self-healable materials. The underlying mechanism involved the thermal transitions as well as the enrichment of the healing…

Abstract

Purpose

This paper aims to exploit shape-memory polymers as self-healable materials. The underlying mechanism involved the thermal transitions as well as the enrichment of the healing reagents and the closure of the crack surfaces due to shape recovery. The multi-stimuli-triggered shape memory composite was capable of self-healing under not only direct thermal but also electrical stimulations.

Design/methodology/approach

The shape memory epoxy polymer composites comprising the AgNWs and poly (ε-caprolactone) were fabricated by dry transfer process. The morphologies of the composites were investigated by the optical microscope and scanning electron microscopy (SEM). The electrical conduction and the Joule heating effect were measured. Furthermore, the healing efficiency under the different stimuli was calculated, whose dependence on the compositions was also discussed.

Findings

The AgNWs network maintained most of the pathways for the electrons transportation after the dry transfer process, leading to a superior conduction and flexibility. Consequently, the composites could trigger the healing within several minutes, as applied with relatively low voltages. It was found that the composites having more the AgNWs content had better electrically triggered performance, while 50 per cent poly (ε-caprolactone) content endowed the materials with max healing efficiency under thermal or electrical stimuli.

Research limitations/implications

The findings may greatly benefit the application of the intelligent polymers in the fields of the multifunctional flexible electronics.

Originality/value

Most studies have by far emphasized on the direct thermal triggered cases. Herein, a novel, flexible and conductive shape memory-based composite, which was capable of self-healing under the thermal or electrical stimulations, has been proposed.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1248

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 February 1993

This report, presented as the keynote paper at Surface Mount International, is the culmination of joint efforts to assess the use of lead in electronics assembly. The study, which…

Abstract

This report, presented as the keynote paper at Surface Mount International, is the culmination of joint efforts to assess the use of lead in electronics assembly. The study, which is presented in two parts, involved the collaboration of the following participants: B. R. Allenby and J. P. Ciccarelli, AT&T, Basking Ridge, New Jersey; I. Artaki, J. R. Fisher and D. Schoenthaler, AT&T Bell Laboratories, ERC, Princeton, New Jersey; T. A. Carroll, Hughes, El Segundo, California; D. W. Dahringer, Y. Degani, R. S. Freund, T. E. Graedel, A. M. Lyons and J. T. Plewes, AT&T Bell Laboratories, Murray Hill, New Jersey; C. Gherman and H. Solomon, GE Aerospace, Philadelphia, Pennsylvania; C. Melton, Motorola Inc., Schaumburg, Illinois; G. C. Munie, AT&T Bell Laboratories, Indian Hill, Naperville, Illinois; and N. Socolowski, Alpha Metals, Jersey City, New Jersey. Part 1 was published in the previous issue of Circuit World, Vol. 19, No. 2.

Details

Circuit World, vol. 19 no. 3
Type: Research Article
ISSN: 0305-6120

1 – 10 of over 1000