Search results

1 – 3 of 3
Article
Publication date: 3 February 2020

Changhua Liu, Jide Qian, Zuocai Wang and Jin Wu

For fixed-wing micro air vehicles, the attitude determination is usually produced by the horizon/Global Navigation Satellite System (GNSS) in which the GNSS provides yaw…

Abstract

Purpose

For fixed-wing micro air vehicles, the attitude determination is usually produced by the horizon/Global Navigation Satellite System (GNSS) in which the GNSS provides yaw estimates, while roll and pitch are computed using horizon sensors. However, the attitude determination has been independently obtained from the two sensors, which will result in insufficient usage of data. Also, when implementing attitude determination algorithms on embedded platforms, the computational resources are highly restricted. This paper aims to propose a computationally efficient linear Kalman filter to solve the problem.

Design/methodology/approach

The observation model is in the form of a least-square optimization composed by GNSS and horizontal measurements. Analytical quaternion solution along with its covariance is derived to significantly speed up on-chip computation.

Findings

The reconstructed attitude from Horizon/GNSS is integrated with quaternion kinematic equation from gyroscopic data that builds up a fast linear Kalman filter. The proposed filter does not involve coupling effects presented in existing works and will be more robust encountering bad GNSS measurements.

Originality/value

Electronic systems are designed on a real-world fixed-wing plane. Experiments are conducted on this platform that show comparisons on the accuracy and computation execution time of the proposed method and existing representatives. The results indicate that the proposed algorithm is accurate and much faster computation speed in studied scenarios.

Details

Sensor Review, vol. 40 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 March 2021

Neethu P.S., Suguna R. and Palanivel Rajan S.

This paper aims to propose a novel methodology for classifying the gestures using support vector machine (SVM) classification method. Initially, the Red Green Blue color hand…

274

Abstract

Purpose

This paper aims to propose a novel methodology for classifying the gestures using support vector machine (SVM) classification method. Initially, the Red Green Blue color hand gesture image is converted into YCbCr image in preprocessing stage and then palm with finger region is segmented by threshold process. Then, distance transformation method is applied on the palm with finger segmented image. Further, the center point (centroid) of palm region is detected and the fingertips are detected using SVM classification algorithm based on the detected centroids of the detected palm region.

Design/methodology/approach

Gesture is a physical indication of the body to convey information. Though any bodily movement can be considered a gesture, generally it originates from the movement of hand or face or combination of both. Combined gestures are quiet complex and difficult for a machine to classify. This paper proposes a novel methodology for classifying the gestures using SVM classification method. Initially, the color hand gesture image is converted into YCbCr image in preprocessing stage and then palm with finger region is segmented by threshold process. Then, distance transformation method is applied on the palm with finger segmented image. Further, the center point of the palm region is detected and the fingertips are detected using SVM classification algorithm. The proposed hand gesture image classification system is applied and tested on “Jochen Triesch,” “Sebastien Marcel” and “11Khands” data set hand gesture images to evaluate the efficiency of the proposed system. The performance of the proposed system is analyzed with respect to sensitivity, specificity, accuracy and recognition rate. The simulation results of the proposed method on these different data sets are compared with the conventional methods.

Findings

This paper proposes a novel methodology for classifying the gestures using SVM classification method. Distance transform method is used to detect the center point of the segmented palm region. The proposed hand gesture detection methodology achieves 96.5% of sensitivity, 97.1% of specificity, 96.9% of accuracy and 99.3% of recognition rate on “Jochen Triesch” data set. The proposed hand gesture detection methodology achieves 94.6% of sensitivity, 95.4% of specificity, 95.3% of accuracy and 97.8% of recognition rate on “Sebastien Marcel” data set. The proposed hand gesture detection methodology achieves 97% of sensitivity, 98% of specificity, 98.1% of accuracy and 98.8% of recognition rate on “11Khands” data set. The proposed hand gesture detection methodology consumes 0.52 s as recognition time on “Jochen Triesch” data set images, 0.71 s as recognition time on “Sebastien Marcel” data set images and 0.22 s as recognition time on “11Khands” data set images. It is very clear that the proposed hand gesture detection methodology consumes less recognition rate on “11Khands” data set when compared with other data set images. Hence, this data set is very suitable for real-time hand gesture applications with multi background environments.

Originality/value

The modern world requires more numbers of automated systems for improving our daily routine activities in an efficient manner. This present day technology emerges touch screen methodology for operating or functioning many devices or machines with or without wire connections. This also makes impact on automated vehicles where the vehicles can be operated without any interfacing with the driver. This is possible through hand gesture recognition system. This hand gesture recognition system captures the real-time hand gestures, a physical movement of human hand, as a digital image and recognizes them with the pre stored set of hand gestures.

Details

Circuit World, vol. 48 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 May 2017

Danguang Pan and Chenfeng Li

Extended from the classic Rayleigh damping model in structural dynamics, the Caughey damping model allows the damping ratios to be specified in multiple modes while satisfying the…

Abstract

Purpose

Extended from the classic Rayleigh damping model in structural dynamics, the Caughey damping model allows the damping ratios to be specified in multiple modes while satisfying the orthogonality conditions. Despite these desirable properties, Caughey damping suffers from a few major drawbacks: depending on the frequency distribution of the significant modes, it can be difficult to choose the reference frequencies that ensure reasonable values for all damping ratios corresponding to the significant modes; it cannot ensure all damping ratios are positive. This paper aims to present a constrained quadratic programming approach to address these issues.

Design/methodology/approach

The new method minimizes the error of the structural displacement peak based on the response spectrum theory, while all modal damping ratios are constrained to be greater than zero.

Findings

Several comprehensive examples are presented to demonstrate the accuracy and effectiveness of the proposed method, and comparisons with existing approaches are provided whenever possible.

Originality/value

The proposed method is highly efficient and allows the damping ratios to be conveniently specified for all significant modes, producing optimal damping coefficients in practical applications.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3