Search results

1 – 10 of 120
Article
Publication date: 5 May 2015

Bo Zhao, Nan Wang and Guohua Jiang

– The purpose of this paper is to arrange zinc oxide (ZnO) nanowires into an appropriate position on electrodes and to research the properties of ZnO nanowires.

Abstract

Purpose

The purpose of this paper is to arrange zinc oxide (ZnO) nanowires into an appropriate position on electrodes and to research the properties of ZnO nanowires.

Design/methodology/approach

In this paper, dielectrophoresis (DEP) was used to fabricate ZnO nanowire devices, and the responses to temperature, ultraviolet (UV) light and breath of the device were studied.

Findings

The number of the bridged nanowires is increased with alternating current voltage. ZnO nanowires demonstrate a good photoconductivity illuminated by 365-nm UV light, and show a stable performance in monitoring unnatural breath of high frequency and low strength.

Originality/value

In this paper, DEP is a promising method for controllable assembly of ZnO nanowires. ZnO nanowires demonstrate a good response to 365-nm UV light and exhaled breath, which show great potential application in UV detector and medical monitor.

Details

Microelectronics International, vol. 32 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 January 2018

Guohua Jiang, Dongmei Zhao and Bo Zhao

The purpose of this paper is to investigate the optoelectronic properties of the multichannel ZnO UV photodetectors.

Abstract

Purpose

The purpose of this paper is to investigate the optoelectronic properties of the multichannel ZnO UV photodetectors.

Design/methodology/approach

ZnO nanowires were assembled by dielectrophoresis for the UV photodetectors. Different ZnO channels were adjusted by different alternating current voltages and investigated for UV optoelectronic properties.

Findings

The number of the ZnO channels increases with the enhancing alternating current voltage. Optimum performance of the UV photodetectors is obtained with more channels.

Originality/value

Dielectrophoresis is a promising method for controllable assembly of multichannel ZnO photodetectors. ZnO photodetectors with more channels demonstrate a good response to 380-nm UV light, which shows great potential application in UV photodetector.

Details

Microelectronics International, vol. 35 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 11 October 2022

Marina Stramarkou, Achilleas Bardakas, Magdalini Krokida and Christos Tsamis

Carbon dioxide (CO2) has attracted special scientific interest over the last years mainly because of its relation to climate change and indoor air quality. Except for this, CO2

267

Abstract

Purpose

Carbon dioxide (CO2) has attracted special scientific interest over the last years mainly because of its relation to climate change and indoor air quality. Except for this, CO2 can be used as an indicator of food freshness, patients’ clinical state and fire detection. Therefore, the accurate monitoring and controlling of CO2 levels are imperative. The development of highly sensitive, selective and reliable sensors that can efficiently distinguish CO2 in various conditions of temperature, humidity and other gases’ interference is the subject of intensive research with chemi-resistive zinc oxide (ZnO)-based sensors holding a privileged position. Several ZnO nanostructures have been used in sensing applications because of their versatile features. However, the deficient selectivity and long-term stability remain major concerns, especially when operating at room temperature. This study aims to encompass an extensive study of CO2 chemi-resistive sensors based on ZnO, introducing the most significant advances of recent years and the best strategies for enhancing ZnO sensing properties.

Design/methodology/approach

An overview of the different ZnO nanostructures used for CO2 sensing and their synthesis methods is presented, focusing on the parameters that highly affect the sensing mechanism and, thus, the performance of CO2 sensors.

Findings

The selectivity and sensitivity of ZnO sensors can be enhanced by adjusting various parameters during their synthesis and by doping or treating ZnO with suitable materials.

Originality/value

This paper summarises the advances in the rapidly evolving field of CO2 sensing by ZnO sensors and provides research directions for optimised sensors in the future.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 May 2020

Anh Thi Le and Swee-Yong Pung

This paper aims to investigate the reusability of metal/metal oxide-coupled ZnO nanorods (ZnO NRs) to degrade rhodamine B (RhB).

Abstract

Purpose

This paper aims to investigate the reusability of metal/metal oxide-coupled ZnO nanorods (ZnO NRs) to degrade rhodamine B (RhB).

Design/methodology/approach

ZnO NRs particles were synthesized by precipitation method and used to remove various types of metal ions such as Cu2+, Ag+, Mn2+, Ni2+, Pb2+, Cd2+ and Cr2+ ions under UV illumination. The metal/metal oxide-coupled ZnO NRs were characterized by scanning electron microscope, X-ray diffraction and UV-Vis diffuse reflectance. The photodegradation of RhB dye by these metal/metal oxide-coupled ZnO NRs under UV exposure was assessed.

Findings

The metal/metal oxide-coupled ZnO NRs were successfully reused to remove RhB dye in which more than >90% of RhB dye was degraded under UV exposure. Furthermore, the coupling of Ag, CuO, MnO2, Cd and Ni particles onto the surface of ZnO NRs even enhanced the degradation of dye. The dominant reactive species involved in the degradation of RhB dye were OH- and O2-free radicals.

Research limitations/implications

The coupling of metal/metal oxide onto the surface of ZnO NRs after metal ions removal could affect the photocatalytic performance of ZnO NRs in the degradation of organic pollutants in subsequent stage.

Practical implications

A good reusability performance of metal/metal oxide-coupled ZnO NRs make ZnO NRs become a desirable photocatalyst material for the treatment of wastewater, which consists of both heavy metal ions and organic dyes.

Originality/value

Metal/metal oxide coupling onto the surface of ZnO NRs particles improved subsequent UV-assisted photocatalytic degradation of RhB dye.

Details

Pigment & Resin Technology, vol. 50 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 January 2017

Mubeen Zafar, Muhammad Naeem Awais, Muhammad Asif, Amir Razaq and Gul Amin

The purpose of this research work is to harvest energy using the piezoelectric properties of ZnO nanowires (NW). Fabrication and characterization of the piezoelectric…

Abstract

Purpose

The purpose of this research work is to harvest energy using the piezoelectric properties of ZnO nanowires (NW). Fabrication and characterization of the piezoelectric nanogenerator (NG), based on Al/ZnO/Au structure without using hosting layer, were done to harvest energy. The proposed method has full potential to harvest the cost-effective energy.

Design/methodology/approach

ZnO NW were fabricated between the thin layers of Al- and Au-coated substrates for the development of piezoelectric NG. To grow ZnO NW, ZnO seed layer was prepared on the Al-coated substrate, and then ZnO NW were grown by aqueous chemical growth method. Finally, Au top electrode was used to conclude the Al/ZnO/Au NG structure. The Al and Au electrodes were used to establish the ohmic and Schottky contacts with ZnO NW, respectively.

Findings

Surface morphology of the fabricated device was done by using scanning electron microscopy, and electrical characterization of the sample was performed with digital oscilloscope, picoammeter and voltmeter. The energy harvesting experiment was performed to excite the presented device. The fabricated piezoelectric-sensitive device revealed the maximum open circuit voltage up to 5 V and maximum short circuit current up to 30 nA, with a maximum power of 150 nW. Consequently, it was also shown that the output of the fabricated device was increased by applying the stress. The presented work will help for the openings to capture the mechanical energy from the surroundings to power up the nano/micro-devices. This research work shows that NGs have the competency to build the self-powered nanosystems. It has potential applications in biosensing and personal electronics.

Originality/value

The fabrication of simple and cost-effective piezoelectric NG is done with a structure of Al/ZnO/Au without using hosting layer. The presented method elucidates an efficient and cost-effective approach to harvest the mechanical energy from the native environment.

Details

Microelectronics International, vol. 34 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
Article
Publication date: 23 March 2012

463

Abstract

Details

Sensor Review, vol. 32 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 3 August 2010

Sharul Ashikin Kamaruddin, Mohd Zainizan Sahdan, Kah‐Yoong Chan, Mohamad Rusop and Hashim Saim

Zinc oxide (ZnO) is an emerging optoelectronic material due to its various functional behaviors. The purpose of this paper is to report on the fabrication and characterizations of…

Abstract

Purpose

Zinc oxide (ZnO) is an emerging optoelectronic material due to its various functional behaviors. The purpose of this paper is to report on the fabrication and characterizations of ZnO microrods.

Design/methodology/approach

ZnO microrods were synthesized using sol‐gel immerse technique on oxidized silicon (Si) substrates. The oxidized Si substrates were immersed in ZnO aqueous solution for different times ranging from three to five hours. The surface morphologies of the ZnO microrods were examined using scanning electron microscope (SEM). In order to investigate the structural properties, the ZnO microrods were measured using an X‐ray diffractometer (XRD). The optical properties were measured using a photoluminescence (PL) spectrophotometer.

Findings

Characterization from SEM shows an enhanced growth of the ZnO rods with increasing immerse time. XRD characterizations demonstrate sharp and narrow diffraction peaks peculiar to ZnO, which implies that the rod is of high crystallinity. Based on the PL spectra, long immerse time results in the high peak in the UV region.

Originality/value

This paper concludes that the immerse time exerts an influence on the ZnO microrods. A longer immerse duration is preferred in the fabrication of the ZnO microrod, which is considered an emerging material for many advanced electronic and optoelectronic applications.

Details

Microelectronics International, vol. 27 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 19 June 2019

Kasif Teker, Yassir A. Ali and Ali Uzun

This study aims to investigate photosensing characteristics of SiC and GaN nanowire-based devices through exposure to UV light. The photocurrent transients have been modeled to…

142

Abstract

Purpose

This study aims to investigate photosensing characteristics of SiC and GaN nanowire-based devices through exposure to UV light. The photocurrent transients have been modeled to determine rise and decay process time constants. The 1D-semiconductor nanowires can exhibit higher light sensitivity compared to bulk materials because of their large surface area to volume ratio and the quantum size effects.

Design/methodology/approach

Nanowire devices have been fabricated through dielectrophoresis for integrating nanowires onto pre-patterned electrodes (10 nm Ti/ 90 nm Au) with a spacing about 3 µm onto SiO2/Si (doped) substrate. The photocurrent measurements were carried out under room temperature conditions with UV light of 254 nm wavelength.

Findings

SiCNWs yield very short rise and decay time constants of 1.3 and 2.35 s, respectively. This fast response indicates an enhanced surface recombination of photoexcited electron-hole pairs. Conversely, GaNNWs yield longer rise and decay time constants of 10.3 and 15.4 s, respectively. This persistent photocurrent suggests a reduced surface recombination process for the GaNNWs.

Originality/value

High selective UV light sensitivity, small size, very short response time, low power consumption and high efficiency are the most important features of nanowire-based devices for new and superior applications in photodetectors, photovoltaics, optical switches, image sensors and biological and chemical sensing.

Article
Publication date: 3 August 2010

Robert Bogue

The purpose of this paper is to provide a review of recent developments in nanoelectronic devices, with an emphasis on the materials and fabrication technologies employed.

Abstract

Purpose

The purpose of this paper is to provide a review of recent developments in nanoelectronic devices, with an emphasis on the materials and fabrication technologies employed.

Design/methodology/approach

This paper focuses on three critical fields of nanoelectronics: integrated circuits (ICs), sensors and displays. It describes recent developments and considers the materials and techniques used in their fabrication.

Findings

This paper shows that nanoelectronic developments, particularly experimental ICs, are progressing very rapidly but all manner of different materials and non‐standard fabrication processes are involved. Major efforts are underway to develop simple and cost‐effective techniques which will allow the high volume production of suitable nanomaterials and their incorporation into commercial nanoelectronic devices.

Originality/value

The paper provides an up‐to‐date review of nanoelectronic device developments and fabrication technologies.

Details

Assembly Automation, vol. 30 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 August 2011

L.S. Chuah, Z. Hassan, S.S. Tneh, M.A. Ahmad, S.K. Mohd Bakhori and Y. Yusof

The purpose of this paper is to propose a simple physical evaporation route in which catalyst‐free zinc oxide (ZnO) nanoscrewdrivers were deposited on silicon (Si) (111…

Abstract

Purpose

The purpose of this paper is to propose a simple physical evaporation route in which catalyst‐free zinc oxide (ZnO) nanoscrewdrivers were deposited on silicon (Si) (111) substrates.

Design/methodology/approach

Prior to the deposition, the Si (111) wafer was cut into pieces of 2×2 cm2. Then, the wafers were dipped for 1 min into mixture buffered oxide etchant to remove native oxide. Then, the samples were rinsed in an ultrasonic bath cleaned with boiling acetone, ethanol, and de‐ionized (DI) water for 10 min. Lastly, the wafers were rinsed in 25 ml DI water in stirred and then were blown dry with nitrogen. In this technique, the starting material is high‐purity metallic zinc (Zn) powder (99.99 per cent pure). Following, the Zn films were then annealed under air environment in the furnace at 500°C for 1 h deprived of any catalysts.

Findings

These ZnO samples were studied by scanning electron microscopy, high‐resolution X‐ray diffraction (HR‐XRD), and photoluminescence (PL) spectroscopy. Atomic force microscope (AFM) images were applied to ascertain surface morphology of produced ZnO nanoscrewdrivers. XRD pattern confirmed that the ZnO nanoscrewdrivers were of polycrystalline structure in universe with a hexagonal close packed type and c‐axis is perpendicular to the substrate. The peak at 34° correspond to the reflection planes of ZnO(002) crystallographic plane is perceived. The AFM surface images disclosed that the surfaces of produced ZnO thin films are not smooth. The PL spectrum of as‐synthesized nanoscrewdrivers shows a UV emission peak at 380 nm and a broad green emission peak at 500 nm.

Originality/value

The paper reports on a simple physical evaporation route, ZnO nanoscrewdrivers were synthesized via the thermal evaporation of the high‐purity Zn powders and annealed at 500°C under air atmosphere without introducing any hetero‐metal catalysts or other carrier gases approach.

Details

Microelectronics International, vol. 28 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 120