Search results

1 – 2 of 2
Article
Publication date: 30 May 2019

J. Esfandiari and Y. Khezeli

An analytical investigation is performed on zipper-braced frames. Zipper-braced frames are an innovative bracing system for steel structures. Conventional inverted-V-braced frames

Abstract

Purpose

An analytical investigation is performed on zipper-braced frames. Zipper-braced frames are an innovative bracing system for steel structures. Conventional inverted-V-braced frames exhibit a design problem arising from the unbalanced vertical force generated by the lower story braces when one of them buckles. This adverse effect can be mitigated by adding zipper columns or vertical members connecting the intersection points of the braces above the first floor.

Design/methodology/approach

This paper critically evaluates over strength, ductility and response modification factors of these structures. To achieve the purpose of this research, several buildings of different stories are considered. Static pushover analysis, linear dynamic analysis and nonlinear incremental dynamic analysis are performed by OpenSees software concerning ten records of past earthquakes.

Findings

Also, ductility factor, over strength factor and response modification factor, has been calculated for zipper-braced frames system. The values of 3.5 and 5 are suggested for response modification factor in ultimate limit state and allowable stress methods, respectively.

Originality/value

The fragility curves were plotted for the first time for such kind of braces. It should be mentioned that these curves play significant roles in evaluating seismic damage of buildings.

Details

World Journal of Engineering, vol. 16 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 April 2023

SVKSV Krishna Kiran Poodipeddi, Amarthya Singampalli, Lalith Sai Madhav Rayala and Surya Sudarsan Naveen Ravula

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel…

Abstract

Purpose

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel is an essential element of the vehicle suspension system that supports the static and dynamic loads encountered during its motion. The rim provides a firm base to hold the tire and supports the wheel, and it is also one of the load-bearing elements in the entire automobile as the car's weight and occupants' weight act upon it. The wheel rim should be strong enough to withstand the load with such a background, ensuring vehicle safety, comfort and performance. The dimensions, shape, structure and material of the rim are crucial factors for studying vehicle handling characteristics that demand automobile designers' concern.

Design/methodology/approach

In the present study, solid models of three different wheel rims, namely, R-1, R-2 and R-3, designed for three different cars, are modelled in SOLIDWORKS. Different carbon composite materials of polyetheretherketone (PEEK), namely, PEEK 90 HMF 40, PEEK 450 CA 30, PEEK 450 GL 40 and carbon fibre reinforced polymer-unidirectional (CFRP-UD) are used as rim materials for conducting the structural and fatigue analysis using ANSYS Workbench.

Findings

The results thus obtained in the analyses are used to identify the better carbon fibre composite material for the wheel rim such that it gives better structural properties and less fatigue. The R-3 model rim has shown better structural properties and less fatigue with PEEK 90 HMF 40 material.

Originality/value

The carbon composite materials used in this study have shown promissory results that can be used as an alternative for aluminium, steel and other regular materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2