Search results

1 – 10 of over 2000
Article
Publication date: 1 December 2005

Nivin M. Ahmed, Adel Attia and Mohamed M. Selim

Aims to study inhibitive properties of new compounds that are based on the Wurtzite structure of zinc oxide with an admixture of cobalt using zinc oxide as a reference.

Abstract

Purpose

Aims to study inhibitive properties of new compounds that are based on the Wurtzite structure of zinc oxide with an admixture of cobalt using zinc oxide as a reference.

Design/methodology/approach

The conditions for the preparation of pigments using different ratios of both cobalt and zinc were investigated. Characterization of these pigments was carried out using spectroscopic methods of analysis via X‐ray diffraction, transmission and scanning electron microscopy. Also, evaluations of the pigments prepared, in terms of oil absorption, specific gravity, water‐soluble matter and pH, using international standard testing methods was performed. The pigments prepared were incorporated in anticorrosive paint formulations based on medium oil alkyd resin as a binder. The physico‐mechanical properties of the relevant paint films were obtained, while their anticorrosive properties were assessed by tests in 3.5 percent NaCl solution for 28 days. Electrochemical measurements based on corrosion rates of paint films also were studied.

Findings

The results showed that the anticorrosive protection properties of the pigment prepared were better than with zinc oxide pigment alone.

Research limitations/implications

The pigments prepared can be used as reinforcing filler in different rubber and plastic composites providing them with an intense green color. As the concentration of cobalt oxide exceeds 15 percent, the reinforcing and effects decreased and vice versa.

Originality/value

Zinc chromate is one of the anticorrosive pigments most frequently used in the formulation of primers. However, its environmental aggressiveness and toxicity severely restrict its use and different green alternatives have been proposed in order to replace it. One such alternative is the pigment evaluated in this paper. New pigment applications, such as reinforcing fillers for rubber and plastic composites, also could be attractive.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1964

In this special feature details are given of those British paints which can be described as corrosion‐resistant primers, both one‐ and two‐pack. The materials are generally…

Abstract

In this special feature details are given of those British paints which can be described as corrosion‐resistant primers, both one‐ and two‐pack. The materials are generally classified according to the base or pigment which actively prevents corrosion—e.g. metallic zinc in zinc/epoxy formulations— or by the base which produces a barrier action against corrosion, e.g. bitumen in bituminous paints. Exceptions to this are the etching primers, which are separately classified. About 300 primers are described, the manufacturers' names and addresses being cross‐indexed and listed separately on page 48.

Details

Anti-Corrosion Methods and Materials, vol. 11 no. 8
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 7 November 2008

Nivin M. Ahmed

The purpose of this paper is to present a new trend of anticorrosive pigments based on bulk (core) of zinc oxide covered with a surface layer of phosphates.

Abstract

Purpose

The purpose of this paper is to present a new trend of anticorrosive pigments based on bulk (core) of zinc oxide covered with a surface layer of phosphates.

Design/methodology/approach

A new batch of pigments based on core‐shell theory containing a core (bulk) of cheap oxides covered by a layer of phosphates were prepared. These new pigments combined the properties of both components besides being more economically feasible. Simple chemical techniques were used to prepare these pigments. Characterization of these pigments using X‐ray diffraction and scanning electron microscopy was carried out. Evaluation of these pigments using international standard testing methods was estimated. These pigments were incorporated in solvent‐based paint formulations based on medium oil alkyd resin. The physico‐mechanical properties of dry films and their corrosion properties using an accelerated laboratory test in 3.5 percent NaCl for 28 days were tested.

Findings

It was found that those pigments based essentially on zinc oxide covered with a surface layer of phosphates were easily prepared, are economically feasible and can successfully replace original phosphates with similar efficiency in their corrosion protection behaviour.

Practical implications

These pigments can be applied in other polymer composites, e.g. rubber and plastics, as a reinforcing agent.

Originality/value

The prepared pigments are environmentally friendly and can replace other hazardous pigments (e.g. chromates) with almost the same quality in their performance; also they can be used in industries other than paints, e.g. paper, rubber and plastics composites.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 1990

F. Sjoukes

In the hot dip galvanizing process two different fluxes are used to remove the zinc oxide layer, always present on the liquid zinc surface. When this oxide layer, which contains…

Abstract

In the hot dip galvanizing process two different fluxes are used to remove the zinc oxide layer, always present on the liquid zinc surface. When this oxide layer, which contains also aluminium oxide, is dragged into the zinc by the articles, interfering the reaction zinc‐iron. In former days a flux floating on a part of the liquid zinc surface was rather common, at present this wet flux is almost completely replaced by the dry galvanizing process. Since the chemical reactions taking place in the wet flux, partly take place in the flux for dry galvanizing too, first this wet flux will be discussed in brief.

Details

Anti-Corrosion Methods and Materials, vol. 37 no. 4
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 28 October 2014

V. Rajasekharan and P. Manisankar

The purpose of this study is to introduce mechanochemically prepared polyaniline anticorrosive additives. In primer coating technology, there is an increasing interest in the…

Abstract

Purpose

The purpose of this study is to introduce mechanochemically prepared polyaniline anticorrosive additives. In primer coating technology, there is an increasing interest in the development of efficient anticorrosive additives which replace the conventional inorganic anticorrosive pigments like heavy metal chromates and phosphates normally added to primer paints for the coating on metals. Conducting polymers are found to be better alternatives.

Design/methodology/approach

Polyaniline phosphate is synthesized through solid-state conditions without using any solvent. The synthesized polyaniline phosphate is added in the primer formulation instead of zinc phosphate. Primers with different quantity of zinc phosphate are also formulated and studied for comparison. The comparison between their abilities to control corrosion of carbon steel were done with application of open-circuit potential monitoring, polarization and electrochemical impedance spectroscopy methods in 3.5 per cent NaCl solution.

Findings

Corrosion studies indicate that polyaniline phosphate can improve corrosion protection properties by taking part the passivation processes. The performance of polyaniline phosphate is better than zinc phosphate.

Originality/value

I certify that the results are from our original research and this paper is neither considered for publication elsewhere nor published previously.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 June 2008

A. Kalendová and D. Veselý

The purpose of this paper is to synthesize anticorrosion pigments ZnFe2O4 from diverse raw materials of various shapes and size of primary particles.

1357

Abstract

Purpose

The purpose of this paper is to synthesize anticorrosion pigments ZnFe2O4 from diverse raw materials of various shapes and size of primary particles.

Design/methodology/approach

Anticorrosion pigments were synthesized through a high‐temperature process during a solid phase. Zinc ferrites were prepared from hematite (α‐Fe2O3), goethite (α‐FeO.OH), magnetite (Fe3O4), and specularite (Fe2O3) entering into reaction with zinc oxide at temperatures ranging from 600 up to 1,100°C. The nature of the initial raw material, primarily the shape of its particles, affects the shape of the particles of the synthesized zinc ferrite. The formulated zinc ferrites had a rod‐shape, lamellar, and/or isometric shape. The shape of the particles of synthesized zinc ferrites was studied with regard to its effects on the mechanical and corrosion resistance of organic coatings. The obtained pigments were characterized by means of X‐ray diffraction analysis and scanning electron microscopy. The synthesized anticorrosion pigments were used to prepare epoxy coatings and water‐borne styrene‐acrylate coatings that were subjected to post‐application tests for physical‐mechanical properties and anticorrosion properties.

Findings

The shape of the particles was identified in the synthesized pigments. X‐ray diffraction analysis revealed the degree of precipitation and lattice parameters. All of the synthesized pigments had good anticorrosion efficiency in an epoxy and in styrene‐acrylate coatings. Compared with a commercially used anticorrosion pigment, their protective power in coatings was demonstrably stronger.

Practical implications

The synthesized pigments can be used conveniently in coatings protecting metal bases against corrosion.

Originality/value

The synthesis of zinc ferrites with different particle shapes for applications in anticorrosion coatings provides a new way of protecting metals against corrosion. Of benefit is the fact that the synthesized pigments do not contain any environmentally harmful substances.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 May 2023

Xiao Wang, Xuan Liang, Bo Wang, Chang-qing Guo, Shan-gui Zhang, Kai Yang, Shi-ya Shao, Yan Sun, Zheng Guo, Xue-yan Yu, Donghai Zhang, Tai-jiang Gui, Wei Lu, Ming-liang Sun and Rui Ding

The purpose of this study is to evaluate the effect of graphene, basalt flakes and their synergy on the corrosion resistance of zinc-rich coatings. As the important heavy-duty…

Abstract

Purpose

The purpose of this study is to evaluate the effect of graphene, basalt flakes and their synergy on the corrosion resistance of zinc-rich coatings. As the important heavy-duty anticorrosion coatings, zinc-rich coatings provided cathodic protection for the substrate. However, to ensure cathodic protection, a large number of zinc powder made the penetration resistance known as the weakness of zinc-rich coatings. Therefore, graphene and basalt flakes were introduced into zinc-rich coatings to coordinate its cathodic protection and shielding performance.

Design/methodology/approach

Three kinds of coatings were prepared; they were graphene modified zinc-rich coatings, basalt flakes modified zinc-rich coatings and graphene-basalt flakes modified zinc-rich coatings. The anticorrosion behavior of painted steel was studied by using the electrochemical impedance spectroscopy (EIS) technique in chloride solutions. The equivalent circuit methods were used for EIS analysis to obtain the electrode process structure of the coated steel system. Simultaneously, the corrosion resistance of the three coatings was evaluated by water resistance test, salt water resistance test and salt spray test.

Findings

The study found that the addition of a small amount of graphene and basalt flakes significantly improved the anticorrosion performance of coatings by enhancing their shielding ability against corrosive media and increasing the resistance of the electrochemical reaction. The modified coatings exhibited higher water resistance, salt water resistance and salt spray resistance. The graphene-basalt flakes modified zinc-rich coatings demonstrated the best anticorrosion effect. The presence of basalt scales and graphene oxide in the coatings significantly reduced the water content and slowed down the water penetration rate in the coatings, thus prolonging the coating life and improving anticorrosion effects. The modification of zinc-rich coatings with graphene and basalt flakes improved the utilization rate of zinc powder and the shielding property of coatings against corrosive media, thus strengthening the protective effect on steel structures and prolonging the service life of anticorrosion coatings.

Originality/value

The significance of developing graphene-basalt flakes modified zinc-rich coatings lies in their potential to offer superior performance in corrosive environments, leading to prolonged service life of metallic structures, reduced maintenance costs and a safer working environment. Furthermore, such coatings can be used in various industrial applications, including bridges, pipelines and offshore structures, among others.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 May 2020

Anh Thi Le and Swee-Yong Pung

This paper aims to investigate the reusability of metal/metal oxide-coupled ZnO nanorods (ZnO NRs) to degrade rhodamine B (RhB).

Abstract

Purpose

This paper aims to investigate the reusability of metal/metal oxide-coupled ZnO nanorods (ZnO NRs) to degrade rhodamine B (RhB).

Design/methodology/approach

ZnO NRs particles were synthesized by precipitation method and used to remove various types of metal ions such as Cu2+, Ag+, Mn2+, Ni2+, Pb2+, Cd2+ and Cr2+ ions under UV illumination. The metal/metal oxide-coupled ZnO NRs were characterized by scanning electron microscope, X-ray diffraction and UV-Vis diffuse reflectance. The photodegradation of RhB dye by these metal/metal oxide-coupled ZnO NRs under UV exposure was assessed.

Findings

The metal/metal oxide-coupled ZnO NRs were successfully reused to remove RhB dye in which more than >90% of RhB dye was degraded under UV exposure. Furthermore, the coupling of Ag, CuO, MnO2, Cd and Ni particles onto the surface of ZnO NRs even enhanced the degradation of dye. The dominant reactive species involved in the degradation of RhB dye were OH- and O2-free radicals.

Research limitations/implications

The coupling of metal/metal oxide onto the surface of ZnO NRs after metal ions removal could affect the photocatalytic performance of ZnO NRs in the degradation of organic pollutants in subsequent stage.

Practical implications

A good reusability performance of metal/metal oxide-coupled ZnO NRs make ZnO NRs become a desirable photocatalyst material for the treatment of wastewater, which consists of both heavy metal ions and organic dyes.

Originality/value

Metal/metal oxide coupling onto the surface of ZnO NRs particles improved subsequent UV-assisted photocatalytic degradation of RhB dye.

Details

Pigment & Resin Technology, vol. 50 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 June 1982

E.S. Lower

Zinc stearate (Zinc distearate) is a fine white soft and muctuous odourless bulky powder, molecular weight 632. Its outstanding characteristic is the extremely small particle size…

Abstract

Zinc stearate (Zinc distearate) is a fine white soft and muctuous odourless bulky powder, molecular weight 632. Its outstanding characteristic is the extremely small particle size of the top quality material, which can be less than one micron in diameter, giving it a high specific surface e.g. the order of 25,000 sq.cm. per gram.

Details

Pigment & Resin Technology, vol. 11 no. 6
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 25 May 2022

Nivin M. Ahmed, Mostafa G. Mohamed and Walaa M. Abd El-Gawad

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite…

Abstract

Purpose

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite materials that refer to multilayered structures with a core totally surrounded by shell(s) (onion-like structure). These new structures can offer an advantage of applying new adjustable parameters like shape, stoichiometry and chemical ordering, in addition to the opportunity of tailoring more complexed structures for different applications. Recently it was found that these structures can be tuned and taken for more advanced path with novel structures formed of core surrounded by multishells. The purpose of this study is to study the effect of the new anticorrosive pigments with its mutual shells and how each shell affects the performance of the pigment in protecting the metal and which shell will be more relevant in its effect.

Design/methodology/approach

The prepared pigments were characterized using X-ray fluorescence, X-ray diffraction, TEM and SEM/EDX to prove their core-shell structure, and then they were integrated in coating formulations to evaluate their anticorrosive activity using immersion test and electrochemical impedance spectroscopy (EIS).

Findings

The results showed that the prepared core-shell pigments possess a lot of unique characteristics and can offer improved anticorrosive performance in the generated coatings.

Originality/value

Core-mutual shells structured pigments were prepared for improving the corrosion resistivity of the organic coatings as a new trend in anticorrosive pigments.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 2000