Search results

1 – 10 of 12
Article
Publication date: 30 August 2019

Fujuan Tong, Wenxuan Gou, Lei Li, Zhufeng Yue, Wenjing Gao and Honglin Li

In order to improve the engine reliability and efficiency, an effective way is to reform the turbine blade tip conformation. The paper aims to discuss this issue.

Abstract

Purpose

In order to improve the engine reliability and efficiency, an effective way is to reform the turbine blade tip conformation. The paper aims to discuss this issue.

Design/methodology/approach

The present research provides several novel tip-shaping structures, which are considered to control the blade tip loss. Four different tip geometries have been studied: flat tip, squealer tip, flat tip with streamwise ribs and squealer tip with streamwise ribs. The tip heat transfer and leakage flow are both analyzed in detail, for example the tip heat transfer coefficient, tip flow and local pressure distributions.

Findings

The results show that the squealer seal and streamwise rib can reduce the tip heat transfer and leakage loss, especially for the squealer tip with streamwise ribs. The tip and near-tip flow patterns at the different locations of axial chord reflect that both the squealer seal and streamwise rib structure can control the tip leakage flow loss. In addition, the analysis of the aerodynamic parameters (the static pressure and turbine efficiency) also indicates that the squealer tip with streamwise ribs obtains the highest adiabatic efficiency with an increase of 2.34 percent, compared with that of the flat tip case.

Originality/value

The analysis of aerothermal and dynamic performance can provide a reference for the blade tip design and treatment.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 December 2023

Hongyan Zhu, Xiaochong Wu, Pengzhen Lv, Yuansheng Wang, Huagang Lin, Wei Liu and Zhufeng Yue

Improvement and optimization design of a two-stage vibration isolation system proposed in this paper are conducted to ensure the device of electronic work effective.

Abstract

Purpose

Improvement and optimization design of a two-stage vibration isolation system proposed in this paper are conducted to ensure the device of electronic work effective.

Design/methodology/approach

The proposed two-stage vibration isolation system of airborne equipment is optimized and parameterized based on multi-objective genetic algorithm.

Findings

The results show that compared with initial two-stage vibration isolation system, the angular vibration of the two-stage vibration isolation system becomes 3.55 × 10-4 rad, which decreases by 89%. The linear isolation effect is improved by at least 67.7%.

Originality/value

The optimized two-stage vibration isolation system effectively improves the vibration reduction effect, the resonance peak is obviously improved and the reliability of the mounting bracket and the shock absorber is highly improved, which provides an analysis method for two-stage airborne equipment isolation design under complex dynamic environment.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 August 2023

Hongyan Zhu, Pengzhen Lv, Xiaochong Wu, Yuansheng Wang, Wei Liu, Huagang Lin and Zhufeng Yue

This paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.

Abstract

Purpose

This paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.

Design/methodology/approach

First, the vibration isolation law of the discrete model of large airborne equipment under different damping ratios, stiffness ratios and mass ratios is analyzed, which guides the establishment of a three-dimensional solid model of large airborne equipment. Subsequently, the vibration isolation transfer efficiency is analyzed based on the three-dimensional model of the airborne equipment, and the angular and linear vibration responses of the two-stage vibration isolation system under different frequencies are studied.

Findings

Finally, studies have shown that the steady-state angular vibration at the non-resonant frequency changes little. In contrast, the maximum angular vibration at the resonance peak reaches 0.0033 rad, at least 20 times the response at the non-resonant frequency. The linear vibration at the resonant frequency is at least 2.14 times the response at the non-resonant frequency. Obviously, the amplification factor of linear vibration is less than that of angular vibration, and angular vibration has the most significant effect on the internal vibration of airborne equipment.

Originality/value

The two-stage vibration isolation equipment designed in this paper has a positive guiding significance for the vibration isolation design of large airborne equipment.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 March 2023

Ming Li, Hongwei Liu, Juan Du, Zhixun Wen, Zhufeng Yue and Wei Sun

This paper presents a review concerning the analytical and inverse methods of small punch creep test (SPCT) in order to evaluate the mechanical property of component material at…

104

Abstract

Purpose

This paper presents a review concerning the analytical and inverse methods of small punch creep test (SPCT) in order to evaluate the mechanical property of component material at elevated temperature.

Design/methodology/approach

In this work, the effects of temperature, specimen size and shape on material properties are mainly discussed using the finite element (FE) method. The analytical approaches including membrane stretching, empirical or semi-empirical solutions that are currently used for data interpretation have been presented.

Findings

The state-of-the-art research progress on the inverse method, such as non-linear optimization program and neutral network, is critically reviewed. The capabilities of the inverse technique, the uniqueness of the solution and future development are discussed.

Originality/value

The state-of-the-art research progress on the inverse method such as non-linear optimization program and neutral network is critically reviewed. The capabilities of the inverse technique, the uniqueness of the solution and future development are discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 August 2022

Zhufeng Yue, Ming Li, Lei Li and Zude Zhou

This paper aims to propose a new concept of product manufacturing mode which takes physical manufacturing theory as the basic starting point. In this work, the authors intend to…

133

Abstract

Purpose

This paper aims to propose a new concept of product manufacturing mode which takes physical manufacturing theory as the basic starting point. In this work, the authors intend to systematically define the basic connotation and extension of physical manufacturing, and sort out the typical characteristics of physical manufacturing, in order to propose the general concept of physical manufacturing.

Design/methodology/approach

How to study the combination of physics, mathematics, mechanics and other disciplines with the manufacturing disciplines, and how to elevate modern manufacturing science to a new height, has always been a problem for scientists in the field of manufacturing and engineering construction people to deeply think about. Therefore, on the basis of tracing the development of physics and combining the attributes and functions of manufacturing, the authors propose the basic concept of physical manufacturing. On this basis, the authors further clarify the connotation and extension, theoretical basis and technical system of physical manufacturing, reveal the basic problem domain of research and construct the theoretical foundation of physical manufacturing research, which are of great theoretical value and practical significance to adjust and optimize the manufacturing industry structure, improve the quality of manufacturing industry development and promote the green development of manufacturing industry.

Findings

The research on the basic theory and technical system of physical manufacturing will therefore broaden the way of thinking and make a better understanding of manufacturing science and technology, which will promote the development of manufacturing industry to some extent.

Originality/value

On the basis of continuous improvement of the basic theory and conceptual system of physical manufacturing, the physical manufacturing technology will become more and more perfect; physical manufacturing system and intelligent manufacturing system will become the mainstream of next-generation manufacturing system.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 October 2017

Wuzhu Yan, Zhufeng Yue and Jianwen Feng

The present work aims to reveal the effect of deposition paths on transient temperature, transient stress, residual stress and residual warping in the electron beam freeform…

Abstract

Purpose

The present work aims to reveal the effect of deposition paths on transient temperature, transient stress, residual stress and residual warping in the electron beam freeform fabrication (EBF) process.

Design/methodology/approach

Six typical deposition paths were involved in the finite element (FE) simulations of EBF process by implementing a specially written program.

Findings

The results showed that the deposition path had a remarkable influence on heat transfer and transient temperature distribution in the scanning process, resulting in different residual stress and residual warping after cooling to room temperature. The largest and smallest temperature gradients were obtained from the zigzag and alternate-line paths, respectively. Meanwhile, the temperature gradient decreased with the increase of deposited layers. The optimum deposition path, namely, the alternate-line pattern, was determined with respect to the residual stress and residual warping.

Originality/value

Although some researcher revealed the importance of deposition path through FE analysis and experimental observation, their studies were usually confined within one type of deposition pattern. A complete investigation of typical deposition paths and comparison among them are still lacking in literature. To address the aforementioned gap, the present work started by extensive FE simulations of EBF process involving six representative deposition paths, namely, the alternate-line, zigzag, raster, inside-out spiral, outside-in spiral and Hilbert. For each deposition path, the transient temperature field, residual stress and residual deformation were obtained to optimize the deposition path.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 16 June 2010

Zhufeng Yue

423

Abstract

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
ISSN: 1573-6105

Article
Publication date: 1 March 2008

Wanpeng Wang, Zhufeng Yue, Yongle Hu and Junde Lin

This paper presents numerical simulation results of cylindrical steel lining‐concrete structure’s dynamic plastic response under internal intense blast loading by ANSYS/lS‐DYNA…

Abstract

This paper presents numerical simulation results of cylindrical steel lining‐concrete structure’s dynamic plastic response under internal intense blast loading by ANSYS/lS‐DYNA finite element software. The emphasis is put on the dynamic plastic deformation and three‐dimensional stress conditions of steel lining‐concrete structure. It is shown that maximal plastic deformation of steel lining‐concrete structure results from the first action of shock wave on internal surface of the structure. For the steel lining of the structure, radial stress is compressive stress, while hoop and axial stress is tension stress. For concrete of the structure, three‐dimension stress is compressive stress near the out surface of steel lining. Radial stress of concrete at intense shock wave seems to decay as an exponential function with increasing of scaled‐distance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2008

GAO Hangshan, HAN Yongzhi, ZHANG Juan and YUE Zhufeng

Based on aerodynamic analysis, an optimization method for the profiles of turbine blade is studied in this paper. This method is capable of addressing multiple objectives and…

Abstract

Based on aerodynamic analysis, an optimization method for the profiles of turbine blade is studied in this paper. This method is capable of addressing multiple objectives and constrains without relying on user input. A quintic polynomial is used to build the three‐dimensional blade model and a three dimensional Navier‐Stokes solver was used to solve the flow field around the turbine blade. The objective functions are the turbine aerodynamic efficiency and total pressure ratio. The optimization is completed with the K‐S function technique and accelerated by approximation technique. Finally, the proposed method is applied to optimizing a true blade to validate its accuracy and efficiency. The obtained result shows that the approximation method is more efficient and accurate than the conventional method.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 November 2010

Wei Liu, Yongshou Liu and Zhufeng Yue

Pressure pulsations and vibration working condition lead to dynamic troubles in hydraulic devices. It is highly desirable to be able to estimate the durability at the design stage…

Abstract

Purpose

Pressure pulsations and vibration working condition lead to dynamic troubles in hydraulic devices. It is highly desirable to be able to estimate the durability at the design stage so that appropriate maintenance period can be determined for safety and reliability. The purpose of this paper is to propose a quantitative evaluation method for pulsation and vibration based on reliability.

Design/methodology/approach

Pressure pulsations are approximately treaded as a stationary random process. The principle of transform function and fluid network chain rules are used to disassemble the hydraulic power unit into the series‐system. Mean square deviation of dynamic stress under the pumping source white noise exciting was calculated based on frequency responses. Statistical regularity of displacement and stress responses of pipelines under external random vibration are obtained by the spectrum analysis. Both the first‐passage failure criterion and fatigue damage accumulation failure criterion are adopted to analyze the dynamic pressure reliability of hydraulic pipelines.

Findings

The terminal joint, bellow pipe and pipe clamps are verified as the weak location of the pipelines. The mean square deviations of pulsations and vibration response influence the pipelines reliability. The results indicated that the preventative design method of controlling the pressure below 10 per cent of rated pressure does not meet the security specification of the hydraulic power unit.

Originality/value

The paper proposes a quantitative evaluation method for random pressure pulsation and external vibration based on reliability, which provides a new approach for the safety assessment and design of hydraulic pipelines.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Access

Year

All dates (12)

Content type

1 – 10 of 12