Search results

1 – 10 of 58
Article
Publication date: 25 May 2021

Yan Kou, Zhong Shuai and Samart Powpaka

This study investigated the effect of adding a customer's name onto a standard product on the customer's product attitude from the perspective of the name-letter effect and…

Abstract

Purpose

This study investigated the effect of adding a customer's name onto a standard product on the customer's product attitude from the perspective of the name-letter effect and psychological ownership theory.

Design/methodology/approach

A 2 × 2 experiment was conducted to test the name effect in customization services. The main effects, mediation effects and moderation effects were analyzed using SPSS 22.0 and PROCESS 2.16.3.

Findings

Adding customers' personal names onto a standard product positively affected their attitude toward the product, and these effects were mediated by psychological ownership. Furthermore, customers' responses were moderated by self-threat, whereby threatening customers' self-concept enhanced their attitude toward the product that had their name on it.

Originality/value

This study found a positive name effect that is applicable to customization services. It also identified mediating and moderating mechanisms underlying this effect. Therefore this study extends previous studies on customization services that have solely focusing on complex product personalization by focusing on a service that requires less effort and a more basic customization service. This study also extends previous findings about name-letter effects by focusing on the associations between an individual and an object that are induced by shared name letters and by studying how directly adding a personal name onto an object can influence these associations.

Details

Journal of Service Theory and Practice, vol. 31 no. 4
Type: Research Article
ISSN: 2055-6225

Keywords

Article
Publication date: 3 August 2020

Chen Kuilin, Feng Xi, Fu Yingchun, Liu Liang, Feng Wennan, Jiang Minggang, Hu Yi and Tang Xiaoke

The data protection is always a vital problem in the network era. High-speed cryptographic chip is an important part to ensure data security in information interaction. This paper…

Abstract

Purpose

The data protection is always a vital problem in the network era. High-speed cryptographic chip is an important part to ensure data security in information interaction. This paper aims to provide a new peripheral component interconnect express (PCIe) encryption card solution with high performance, high integration and low cost.

Design/methodology/approach

This work proposes a System on Chip architecture scheme of high-speed cryptographic chip for PCIe encryption card. It integrated CPU, direct memory access, the national and international cipher algorithm (data encryption standard/3 data encryption standard, Rivest–Shamir–Adleman, HASH, SM1, SM2, SM3, SM4, SM7), PCIe and other communication interfaces with advanced extensible interface-advanced high-performance bus three-level bus architecture.

Findings

This paper presents a high-speed cryptographic chip that integrates several high-speed parallel processing algorithm units. The test results of post-silicon sample shows that the high-speed cryptographic chip can achieve Gbps-level speed. That means only one single chip can fully meet the requirements of cryptographic operation performance for most cryptographic applications.

Practical implications

The typical application in this work is PCIe encryption card. Besides server’s applications, it can also be applied in terminal products such as high-definition video encryption, security gateway, secure routing, cloud terminal devices and industrial real-time monitoring system, which require high performance on data encryption.

Social implications

It can be well applied on many other fields such as power, banking, insurance, transportation and e-commerce.

Originality/value

Compared with the current strategy of high-speed encryption card, which mostly uses hardware field-programmable gate arrays or several low-speed algorithm chips through parallel processing in one printed circuit board, this work has provided a new PCIe encryption card solution with high performance, high integration and low cost only in one chip.

Details

Circuit World, vol. 47 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 October 2023

Litao Zhong, Lei Wen and Zhimin Wang

This paper aims to explore the interplay between industrial diversity and sustainable economic development in US counties.

Abstract

Purpose

This paper aims to explore the interplay between industrial diversity and sustainable economic development in US counties.

Design/methodology/approach

Among other popularly used measures, this study uses an underused measure, Hachman index, to gauge the degree of industrial diversity in the models. To capture the impact of industrial diversity on the local community, this study estimates the relationship of two diversity measures to four traditional socioeconomic indicators: per capita personal income growth, gross domestic product per worker, income inequality ratio and poverty rate.

Findings

Statistical results suggest that industrial diversity, which is measured by Hachman index, is significantly related to the four socio-economic indicators. Industrial diversity can positively contribute to regional per capita personal income growth and mitigate income inequality and poverty stress; however, it is negatively related to the gross domestic product (GDP) per worker, which means industrial specialization may contribute to GDP per worker growth.

Originality/value

The findings of this study show that there is a nonlinear relationship between industrial diversity and all socioeconomic indicators. Most of the control variables, human capital variables and business and industry profile variables also display significant and positive impacts on economic development.

Details

International Journal of Development Issues, vol. 23 no. 1
Type: Research Article
ISSN: 1446-8956

Keywords

Article
Publication date: 15 September 2022

Natiq Yaseen Taha Al-Menahlawi, Mohammad Reza Khoshravan Azar, Tajbakhsh Navid Chakherlou and Hussein Al-Bugharbee

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in…

Abstract

Purpose

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in the thickness direction. In this article, polymethyl methacrylate is used for matrix, and single-walled carbon nanotube (CNTs) (10,10) with consideration agglomeration sizes and lumping of CNT inside the agglomerations is applied for reinforcement.

Design/methodology/approach

In analytical formulation, the non-linear Hertz contact law is applied for interaction between projectile and plate surface. High-order shear deformation plate theory is developed, and energy of the system for impactor and plate is written. The governing equations are derived using Ritz method and Lagrange equations and are solved using the fourth-order Runge–Kutta method. Also, ABAQUS finite element model of functionally graded porous plate with all edges simply supported and reinforced by CNT under low-velocity impact is simulated and is compared with those is achieved in the present analytical approach.

Findings

In parametric studies, the influence of porosity distribution patterns include uniform, non-uniform symmetric and non-uniform asymmetric on the histories of contact force and impactor displacement of simply supported plate reinforced by CNT are presented. Eventually, the effects of porosity coefficient, impactor initial velocity, impactor radius and CNTs lumping inside agglomerations for non-uniform symmetric distribution patterns are discussed in impact event in detail.

Originality/value

In this paper, the effect of combination of polymethyl methacrylate and CNTs with consideration agglomeration sizes and lumping of CNTs inside the agglomerations in the form of a functionally graded porous plate is studied in the problem of low-velocity impact analysis.

Article
Publication date: 27 June 2023

Canran Zhang, Jianping Dou, Shuai Wang and Pingyuan Wang

The cost-oriented robotic assembly line balancing problem (cRALBP) has practical importance in real-life manufacturing scenarios. However, only a few studies tackle the cRALBP…

Abstract

Purpose

The cost-oriented robotic assembly line balancing problem (cRALBP) has practical importance in real-life manufacturing scenarios. However, only a few studies tackle the cRALBP using exact methods or metaheuristics. This paper aims to propose a hybrid particle swarm optimization (PSO) combined with dynamic programming (DPPSO) to solve cRALBP type-I.

Design/methodology/approach

Two different encoding schemes are presented for comparison. In the frequently used Scheme 1, a full encoding of task permutations and robot allocations is adopted, and a relatively large search space is generated. DPSO1 and DPSO2 with the full encoding scheme are developed. To reduce the search space and concern promising solution regions, in Scheme 2, only task permutations are encoded, and DP is used to obtain the optimal robot sequence for a given task permutation in a polynomial time. DPPSO is proposed.

Findings

A set of instances is generated, and the numerical experiments indicate that DPPSO achieves a tradeoff between solution quality and computation time and outperforms existing algorithms in solution quality.

Originality/value

The contributions of this paper are three aspects. First, two different schemes of encoding are presented, and three PSO algorithms are developed for the purpose of comparison. Second, a novel updating mechanism of discrete PSO is adjusted to generate feasible task permutations for cRALBP. Finally, a set of instances is generated based on two cost parameters, then the performances of algorithms are systematically compared.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 April 2023

Yang Liu, Ziyu Chen, Jie Gao, Shuai Gan and Erlong Kang

Compared with the robotic manipulation in structured environment, high performance assembly of complex parts in extreme special environment is facing great challenges because of…

192

Abstract

Purpose

Compared with the robotic manipulation in structured environment, high performance assembly of complex parts in extreme special environment is facing great challenges because of the uncertainty in the environment, and the decline of the control accuracy of the robot and the sensor accuracy. The assembly and construction of the space station is a typical case. An important step in the construction of the space station is the module positioning and docking with the auxiliary of the space manipulator. The operation of the manipulator is faced with many problems, such as low sensing information accuracy, large end position deviation and the requirement of weak impact in the docking process. The purpose of this paper is to design a docking method at the strategy level to effectively solve the problems that may be faced in the docking process.

Design/methodology/approach

Inspired by the research of robotic high-precision compliant assembly, this paper introduces the concept of Attractive Region in Environment (ARIE) into the space manipulator–assisted module docking. The contact configuration space of the docking mechanism and the existence of ARIE are systematically analyzed. The docking strategy based on ARIE framework is proposed, in which the impedance control is used to ensure the weak impact during the docking process.

Findings

For the androgynous peripheral spacecraft docking mechanism, a large range of attractive region exists in the high-dimensional contact configuration space. The docking strategy based on ARIE framework can be designed according to the geometric characteristics of the constraint region and the structural characteristics of the docking mechanism. The virtual models and the simulation environment are established, and the effectiveness of the proposed method is preliminarily verified.

Originality/value

Based on the research results of robotic precision compliant manipulation, in this paper, the theory of ARIE is first systematically applied to the analysis of spacecraft docking problem and the design of docking scheme. The effectiveness of the proposed docking method is preliminarily verified for the requirements of large position tolerance and weak impact. The research results will provide theoretical support and technical reference for the assembly and construction of space station and other space manipulator operations.

Details

Robotic Intelligence and Automation, vol. 43 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 November 2022

Shuai Gan, Yang Liu and Ziyu Chen

The paper aims to propose a method to build environmental constraint region online in complex-shaped peg-in-hole assembly tasks.

Abstract

Purpose

The paper aims to propose a method to build environmental constraint region online in complex-shaped peg-in-hole assembly tasks.

Design/methodology/approach

Compared with conventional way which using computer-aided design (CAD) models of assembly parts to construct the environmental constraint region offline, the paper provides an online approach that consists of three aspects: modeling assembly parts through visual recognition, decomposing complex shapes into multiple primitive convex shapes and a numerical algorithm to simulate the peg-in-hole insertion contact. Besides, a contrast experiment is performed to validate the feasibility and effectiveness of the method.

Findings

The experiment result indicates that online construction takes less time than the offline way under the same task conditions. Furthermore, due to the CAD models of the parts are not required to be known, the method proposed in the paper has a broader application in most assembly scenarios.

Originality/value

With the improvement of customization and complexity of manufactured parts, the assembly of complex-shaped parts has drawn greater attention of many researchers. The assembly methods based on attractive region in environment (ARIE) have shown great performance to achieve high-precision manipulation with low-precision systems. The construction of environmental constraint region serves as an essential part of ARIE-based theory, directly affect the formulation and application of assembly strategies.

Details

Assembly Automation, vol. 42 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 October 2021

Fangfang Sun, Tianze Wang and Yong Yang

Rapid prototyping (RP) technology is widely used in many fields in recent years. Bone tissue engineering (TE) is an interdisciplinary field involving life sciences, engineering…

Abstract

Purpose

Rapid prototyping (RP) technology is widely used in many fields in recent years. Bone tissue engineering (TE) is an interdisciplinary field involving life sciences, engineering and materials science. Hydroxyapatite (HAp) are similar to natural bone and it has been extensively studied due to its excellent biocompatibility and osteoconductivity. This paper aims to review nanoscaled HAp-based scaffolds with high porosity fabricated by various RP methods for bone regeneration.

Design/methodology/approach

The review focused on the fabrication methods of HAp composite scaffolds through RP techniques. The paper summarized the evaluation of these scaffolds on the basis of their biocompatibility and biodegradability through in vitro and in vivo tests. Finally, a summary and perspectives on this active area of research are provided.

Findings

HAp composite scaffold fabricated by RP methods has been widely used in bone TE and it has been deeply studied by researchers during the past two decades. However, its brittleness and difficulty in processing have largely limited its wide application in TE. Therefore, the formability of HAp combined with biocompatible organic materials and fabrication techniques could be effectively enhanced, and it can be used in bone TE applications finally.

Originality/value

This review paper presented a comprehensive study of the various types of HAp composite scaffold fabricated by RP technologies and introduced their potential application in bone TE, as well as future roadmap and perspective.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 November 2017

Yong Wan, Yankun Yu, Shuai Gao and Jianguo Gao

The purpose of this paper is to evaluate naturally occurring phytic acid (PA) as a green-water-based lubricant.

Abstract

Purpose

The purpose of this paper is to evaluate naturally occurring phytic acid (PA) as a green-water-based lubricant.

Design/methodology/approach

Lubrication is studied using a ball-on-disk tribometer with silica glass against silicon nitride contact, and the friction coefficient and wear are measured in the boundary lubrication regimes.

Findings

Excellent lubrication performance was found by using PA aqueous solutions. After the running-in process, the sliding coefficient of friction could drop to as low as 0.01 with a quite low concentration of 7.5 × 10−4 M. The lubricating performance of PA solution could be further improved by increasing PA concentration. The work suggests that the excellent lubricity of PA in aqueous solution can be mostly contributed to its adsorption on the silica surface.

Originality/value

The paper shows that the natural products could be used as water-based lubricant additives.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 August 2023

Haijing Sun, Jianing Cui, He Wang, Shuai Yang, Souavang Xaikoua, Yong Tan, Xin Zhou, Baojie Wang and Jie Sun

The purpose of this paper is to study the effect of temperature on Zn–Ni alloys in ChCl–Urea.

Abstract

Purpose

The purpose of this paper is to study the effect of temperature on Zn–Ni alloys in ChCl–Urea.

Design/methodology/approach

Based on cyclic voltammetry experiments, the deposition behavior and kinetics of the Zn–Ni alloy are studied. The nucleation process of the Zn–Ni alloy is studied in detail via chronoamperometry experiments. The effects of the deposition temperature on the microstructure, Ni content and phase composition of Zn–Ni alloy coatings are investigated via scanning electron microscopy and X-ray diffraction (XRD) combined with classical thermodynamics.

Findings

The results show that with increasing temperature, the reduction peak shifts toward a more positive electric potential, which is beneficial for the co-electric deposition process, and the diffusion coefficient is estimated. With increasing temperature, the nucleation process of the Zn–Ni alloy becomes a three-dimensional instantaneous nucleation, the typical kinetic parameters are determined using the standard 3D growth proliferation control model and the Gibbs free energy is estimated. The Zn–Ni alloy coatings are prepared via normal co-deposition. With increasing temperature, the degree of crystallinity increases, the coating gradually becomes uniform and compact and the XRD peak intensity increases.

Originality/value

The nucleation process of the Zn–Ni alloy at different temperatures is analyzed. The diffusion coefficient D and Gibbs free energy are calculated. The contribution of the three processes at different temperatures is analyzed. The effect of temperature on the morphology of the Zn–Ni alloy coatings is studied.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 58