Search results

1 – 10 of 65
Open Access
Article
Publication date: 1 October 2018

Xunjia Zheng, Bin Huang, Daiheng Ni and Qing Xu

The purpose of this paper is to accurately capture the risks which are caused by each road user in time.

2802

Abstract

Purpose

The purpose of this paper is to accurately capture the risks which are caused by each road user in time.

Design/methodology/approach

The authors proposed a novel risk assessment approach based on the multi-sensor fusion algorithm in the real traffic environment. Firstly, they proposed a novel detection-level fusion approach for multi-object perception in dense traffic environment based on evidence theory. This approach integrated four states of track life into a generic fusion framework to improve the performance of multi-object perception. The information of object type, position and velocity was accurately obtained. Then, they conducted several experiments in real dense traffic environment on highways and urban roads, which enabled them to propose a novel road traffic risk modeling approach based on the dynamic analysis of vehicles in a variety of driving scenarios. By analyzing the generation process of traffic risks between vehicles and the road environment, the equivalent forces of vehicle–vehicle and vehicle–road were presented and theoretically calculated. The prediction steering angle and trajectory were considered in the determination of traffic risk influence area.

Findings

The results of multi-object perception in the experiments showed that the proposed fusion approach achieved low false and missing tracking, and the road traffic risk was described as a field of equivalent force. The results extend the understanding of the traffic risk, which supported that the traffic risk from the front and back of the vehicle can be perceived in advance.

Originality/value

This approach integrated four states of track life into a generic fusion framework to improve the performance of multi-object perception. The information of object type, position and velocity was used to reduce erroneous data association between tracks and detections. Then, the authors conducted several experiments in real dense traffic environment on highways and urban roads, which enabled them to propose a novel road traffic risk modeling approach based on the dynamic analysis of vehicles in a variety of driving scenarios. By analyzing the generation process of traffic risks between vehicles and the road environment, the equivalent forces of vehicle–vehicle and vehicle–road were presented and theoretically calculated.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 11 April 2018

Mohamed A. Tawhid and Kevin B. Dsouza

In this paper, we present a new hybrid binary version of bat and enhanced particle swarm optimization algorithm in order to solve feature selection problems. The proposed…

Abstract

In this paper, we present a new hybrid binary version of bat and enhanced particle swarm optimization algorithm in order to solve feature selection problems. The proposed algorithm is called Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm (HBBEPSO). In the proposed HBBEPSO algorithm, we combine the bat algorithm with its capacity for echolocation helping explore the feature space and enhanced version of the particle swarm optimization with its ability to converge to the best global solution in the search space. In order to investigate the general performance of the proposed HBBEPSO algorithm, the proposed algorithm is compared with the original optimizers and other optimizers that have been used for feature selection in the past. A set of assessment indicators are used to evaluate and compare the different optimizers over 20 standard data sets obtained from the UCI repository. Results prove the ability of the proposed HBBEPSO algorithm to search the feature space for optimal feature combinations.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 15 September 2021

Qun Lim, Yi Lim, Hafiz Muhammad, Dylan Wei Ming Tan and U-Xuan Tan

The purpose of this paper is to develop a proof-of-concept (POC) Forward Collision Warning (FWC) system for the motorcyclist, which determines a potential clash based on…

1352

Abstract

Purpose

The purpose of this paper is to develop a proof-of-concept (POC) Forward Collision Warning (FWC) system for the motorcyclist, which determines a potential clash based on time-to-collision and trajectory of both the detected and ego vehicle (motorcycle).

Design/methodology/approach

This comes in three approaches. First, time-to-collision value is to be calculated based on low-cost camera video input. Second, the trajectory of the detected vehicle is predicted based on video data in the 2 D pixel coordinate. Third, the trajectory of the ego vehicle is predicted via the lean direction of the motorcycle from a low-cost inertial measurement unit sensor.

Findings

This encompasses a comprehensive Advanced FWC system which is an amalgamation of the three approaches mentioned above. First, to predict time-to-collision, nested Kalman filter and vehicle detection is used to convert image pixel matrix to relative distance, velocity and time-to-collision data. Next, for trajectory prediction of detected vehicles, a few algorithms were compared, and it was found that long short-term memory performs the best on the data set. The last finding is that to determine the leaning direction of the ego vehicle, it is better to use lean angle measurement compared to riding pattern classification.

Originality/value

The value of this paper is that it provides a POC FWC system that considers time-to-collision and trajectory of both detected and ego vehicle (motorcycle).

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 7 December 2022

T.O.M. Forslund, I.A.S. Larsson, J.G.I. Hellström and T.S. Lundström

The purpose of this paper is to present a fast and bare bones implementation of a numerical method for quickly simulating turbulent thermal flows on GPUs. The work also validates…

Abstract

Purpose

The purpose of this paper is to present a fast and bare bones implementation of a numerical method for quickly simulating turbulent thermal flows on GPUs. The work also validates earlier research showing that the lattice Boltzmann method (LBM) method is suitable for complex thermal flows.

Design/methodology/approach

A dual lattice hydrodynamic (D3Q27) thermal (D3Q7) multiple-relaxation time LBM model capable of thermal DNS calculations is implemented in CUDA.

Findings

The model has the same computational performance compared to earlier publications of similar LBM solvers. The solver is validated against three benchmark cases for turbulent thermal flow with available data and is shown to be in excellent agreement.

Originality/value

The combination of a D3Q27 and D3Q7 stencil for a multiple relaxation time -LBM has, to the authors’ knowledge, not been used for simulations of thermal flows. The code is made available in a public repository under a free license.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 3 December 2019

Wei Xue, Rencheng Zheng, Bo Yang, Zheng Wang, Tsutomu Kaizuka and Kimihiko Nakano

Automated driving systems (ADSs) are being developed to avoid human error and improve driving safety. However, limited focus has been given to the fallback behavior of automated…

1688

Abstract

Purpose

Automated driving systems (ADSs) are being developed to avoid human error and improve driving safety. However, limited focus has been given to the fallback behavior of automated vehicles, which act as a fail-safe mechanism to deal with safety issues resulting from sensor failure. Therefore, this study aims to establish a fallback control approach aimed at driving an automated vehicle to a safe parking lane under perceptive sensor malfunction.

Design/methodology/approach

Owing to an undetected area resulting from a front sensor malfunction, the proposed ADS first creates virtual vehicles to replace existing vehicles in the undetected area. Afterward, the virtual vehicles are assumed to perform the most hazardous driving behavior toward the host vehicle; an adaptive model predictive control algorithm is then presented to optimize the control task during the fallback procedure, avoiding potential collisions with surrounding vehicles. This fallback approach was tested in typical cases related to car-following and lane changes.

Findings

It is confirmed that the host vehicle avoid collision with the surrounding vehicles during the fallback procedure, revealing that the proposed method is effective for the test scenarios.

Originality/value

This study presents a model for the path-planning problem regarding an automated vehicle under perceptive sensor failure, and it proposes an original path-planning approach based on virtual vehicle scheme to improve the safety of an automated vehicle during a fallback procedure. This proposal gives a different view on the fallback safety problem from the normal strategy, in which the mode is switched to manual if a driver is available or the vehicle is instantly stopped.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 8 May 2018

Stef Lommen, Gabriel Lodewijks and Dingena L. Schott

Bulk material-handling equipment development can be accelerated and is less expensive when testing of virtual prototypes can be adopted. However, often the complexity of the…

2044

Abstract

Purpose

Bulk material-handling equipment development can be accelerated and is less expensive when testing of virtual prototypes can be adopted. However, often the complexity of the interaction between particulate material and handling equipment cannot be handled by a single computational solver. This paper aims to establish a framework for the development, verification and application of a co-simulation of discrete element method (DEM) and multibody dynamics (MBD).

Design/methodology/approach

The two methods have been coupled in two directions, which consists of coupling the load data on the geometry from DEM to MBD and the position data from MBD to DEM. The coupling has been validated thoroughly in several scenarios, and the stability and robustness have been investigated.

Findings

All tests clearly demonstrated that the co-simulation is successful in predicting particle–equipment interaction. Examples are provided describing the effects of a coupling that is too tight, as well as a coupling that is too loose. A guideline has been developed for achieving stable and efficient co-simulations.

Originality/value

This framework shows how to achieve realistic co-simulations of particulate material and equipment interaction of a dynamic nature.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 2 June 2023

Sebastian Topczewski and Przemyslaw Bibik

The purpose of this study is to test the performance of the designed automatic control system based on the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG…

Abstract

Purpose

The purpose of this study is to test the performance of the designed automatic control system based on the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) algorithms during landing of the helicopter on the ship deck. This paper is a further development of the series based on Topczewski et al. (2020).

Design/methodology/approach

The system consists of two automatic control algorithms based on LQR and the LQG. It is integrated with the ship motion prediction system based on autoregressive algorithm with parameters calculated using Burg’s method. It is assumed that the source of necessary navigation data is integrated Inertial Navigation System with Global Positioning System. Landing of the helicopter on the ship deck is performed in automatic way, based on the preselected procedure. Performance of the control system is analyzed when all necessary navigation data is available for the system and in case when one of the parameters is unavailable during performing the procedure.

Findings

In this paper, description of the designed control system developed for performing the approach and landing of the helicopter using selected procedure is presented. Helicopter dynamic model is validated using the manufacturer data and by test pilots, overview is presented. Necessary information about ship motion model is also included. Tests showing mission performance while using LQR and LQG algorithms applied to the control system are presented and analyzed, taking into account both situations when full navigation data is available/unavailable for the control system.

Practical implications

Results of the system performance analyses can be used for selection of the proper control methodology for prospective helicopters autopilots. Furthermore, the system can be used to analyze the mission safety when information about one of the navigation parameters is identified by the navigation system as unavailable or incorrect and therefore unavailable during landing on the ship deck.

Originality/value

In this paper, control system dedicated for the automatic landing of the helicopter on the ship deck, based on two different control algorithms is presented. Influence of lack of information about one of the navigation parameters on the mission performance is analyzed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 28 March 2022

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an…

Abstract

Purpose

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an externally imposed uniform magnetic field. Entropy generation and the pressure drop are determined to analyze the performance of the heat transfer. The significance of Joule heating arising due to the applied magnetic field on the heat transfer of the yield stress fluid is described.

Design/methodology/approach

The ventilation in the enclosure of heated walls is created by an opening on one vertical wall through which cold fluid is injected and another opening on the opposite vertical wall through which fluid can flow out.

Findings

This study finds that the inclusion of Fe3O4 nanoparticles with the Al2O3-viscoplastic nanofluid augments the heat transfer. This rate of enhancement in heat transfer is higher than the rate by which the entropy generation is increased as well as the enhancement in the pressure drop. The yield stress has an adverse effect on the heat transfer; however, it favors thermal mixing. The magnetic field, which is acting opposite to the direction of the inlet jet, manifests heat transfer of the viscoplastic hybrid nanofluid. The horizontal jet of cold fluid produces the optimal heat transfer.

Originality/value

The objective of this study is to analyze the impact of the inclined cold jet of viscoplastic electrically conducting hybrid nanofluid on heat transfer from the enclosure in the presence of a uniform magnetic field. The combined effect of hybrid nanoparticles and a magnetic field to enhance heat transfer of a viscoplastic fluid in a ventilated enclosure has not been addressed before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 9 July 2021

Ben Vinod

The static world of flight scheduling where schedules rarely change once published is becoming more responsive with schedule change updates leading up to the departure date due to…

10074

Abstract

Purpose

The static world of flight scheduling where schedules rarely change once published is becoming more responsive with schedule change updates leading up to the departure date due to demand volatility and unpredictable demand patterns. Innovation in cash flow generation will take center stage to operate the business in these uncertain times. Forecasting demand for future flights is a challenge since historical demand patterns are not meaningful which requires a new adaptive robust revenue management approach that monitors key metrics, detects anomalies and quickly takes corrective action when performance targets cannot be achieved.

Design/methodology/approach

The novel COVID-19 pandemic decimated the travel industry in 2020 and continues to plague us with no end in sight. With the steep drop in revenues, airlines need to adapt to a new marketing planning process of scheduling, pricing and revenue management that is more nimble to adapt quickly to changing market conditions. This new approach will continue to be relevant in a post-COVID-19 world during and after economic recovery.

Findings

A methodology for airline revenue planning: scheduling, airline pricing and revenue management, has been proposed that will also work in a post-COVID-19 era.

Research limitations/implications

The limitation of the proposed model is that it needs to be applied in practice to determine the true benefits of this novel approach to airline revenue planning.

Practical implications

Flight scheduling will rely more on clean sheet scheduling, schedule revisions and close in refleeting to better match demand to supply. The office of the chief financial officer will have a permanent task force to monitor cash flow and come up with innovative solutions to generate cash flow for liquidity. Adaptive robust revenue management workflows will be integrated into traditional revenue management workflows in the future for competitive advantage.

Social implications

In a post-COVID-19 world it is anticipated that airline business processes will transform to be nimbler and more proactive in making timely decisions at a greater velocity.

Originality/value

The approach to airline revenue planning for scheduling, pricing and revenue management is a new business process that does not exist today at scale in the airline industry.

Open Access
Article
Publication date: 25 October 2021

Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

964

Abstract

Purpose

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

Design/methodology/approach

Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.

Findings

The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.

Originality/value

The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of 65