Search results

1 – 5 of 5
Article
Publication date: 5 November 2021

Abdelkader Azzeddine Laouid, Abdelkrim Mohrem and Aicha Djalab

This paper aims to find the minimum possible number of phasor measurement units (PMUs) to achieve maximum and complete observability of the power system and improve the redundancy…

Abstract

Purpose

This paper aims to find the minimum possible number of phasor measurement units (PMUs) to achieve maximum and complete observability of the power system and improve the redundancy of measurements, in normal cases (with and without zero injection bus [ZIB]), and then in conditions of a single PMU failure and outage of a single line.

Design/methodology/approach

An efficient approach operates adequately and provides the optimal solutions for the PMUs placement problem. The finest function of optimal PMUs placement (OPP) should be mathematically devised as a problem, and via that, the aim of the OPP problem is to identify the buses of the power system to place the PMU devices to ensure full observability of the system. In this paper, the grey wolf optimizer (GWO) is used for training multi-layer perceptrons (MLPs), which is known as Grey Wolf Optimizer (GWO) based Neural Network (“GW-NN”) to place the PMUs in power grids optimally.

Findings

Following extensive simulation tests with MATLAB/Simulink, the results obtained for the placement of PMUs provide system measurements with less or at most the same number of PMUs, but with a greater degree of observability than other approaches.

Practical implications

The efficiency of the suggested method is tested on the IEEE 14-bus, 24-bus, New England 39-bus and Algerian 114-bus systems.

Originality/value

This paper proposes a new method for placing PMUs in the power grids as a multi-objective to reduce the cost and improve the observability of these grids in normal and faulty cases.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 18 January 2024

Robert T. F. Ah King and Samiah Mohangee

To operate with high efficiency and minimise the risks of power failures, power systems require careful monitoring. The availability of real-time data is crucial for assessing the…

Abstract

To operate with high efficiency and minimise the risks of power failures, power systems require careful monitoring. The availability of real-time data is crucial for assessing the performance of the grid and assisting operators in gauging the present security of the grid. Traditional supervisory control and data acquisition (SCADA)-based systems actually employed provides steady-state measurement values which are the calculation premise of State Estimation. More often, however, the power grid operates under dynamic state and SCADA measurements can lead to erroneous and inaccurate calculation results. The introduction of the phasor measurement unit (PMU) which provides real-time synchronised voltage and current phasors with very high accuracy is universally recognised as an important aspect of delivering a secure and sustainable power system. PMUs are a relatively new technology and because of their high procurement and installation costs, it is imperative to develop appropriate methodologies to determine the minimum number of PMUs as well as their strategic placements to guarantee full observability of a power system. Thus, the problem of the optimal PMU placement (OPP) is formulated as an optimisation problem subject to various constraints to minimise the number of PMUs while ensuring complete observability of the grid. In this chapter, integer linear programming (ILP), genetic algorithm (GA) and non-linear programming (NLP) constrained models of the OPP problem are presented. A new methodology is proposed to incorporate several constraints using the NLP. The optimisation methods have been written in Matlab software and verified on the standard Institute of Electrical and Electronics Engineers (IEEE) 14-bus test system to authenticate their effectiveness. This chapter targets United Nations Sustainable Development Goal 7.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 24 December 2021

Aref Gholizadeh Manghutay, Mehdi Salay Naderi and Seyed Hamid Fathi

Heuristic algorithms have been widely used in different types of optimization problems. Their unique features in terms of running time and flexibility have made them superior to…

Abstract

Purpose

Heuristic algorithms have been widely used in different types of optimization problems. Their unique features in terms of running time and flexibility have made them superior to deterministic algorithms. To accurately compare different heuristic algorithms in solving optimization problems, the final optimal solution needs to be known. Existing deterministic methods such as Exhaustive Search and Integer Linear Programming can provide the final global optimal solution for small-scale optimization problems. However, as the system grows the number of calculations and required memory size incredibly increases, so applying existing deterministic methods is no longer possible for medium and large-scale systems. The purpose of this paper is to introduce a novel deterministic method with short running time and small memory size requirement for optimal placement of Micro Phasor Measurement Units (µPMUs) in radial electricity distribution systems to make the system completely observable.

Design/methodology/approach

First, the principle of the method is explained and the observability of the system is analyzed. Then, the algorithm’s running time and memory usage when applying on some of the modified versions of the Institute of Electrical and Electronics Engineers 123-node test feeder are obtained and compared with those of its deterministic counterparts.

Findings

Because of the innovative method of step-by-step placement of µPMUs, a unique method is developed. Simulation results elucidate that the proposed method has unique features of short running time and small memory size requirements.

Originality/value

While the mathematical background of the observability study of electricity distribution systems is very well-presented in the referenced papers, the proposed step-by-step placement method of µPMUs, which shrinks unobservable parts of the system in each step, is not discussed yet. The presented paper is directly applicable to typical problems in the field of power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Article
Publication date: 2 May 2017

Jacek Klucznik, Zbigniew Lubosny, Krzysztof Dobrzynski, Stanislaw Czapp, Robert Kowalak, Robert Trebski and Stanislaw Pokora

The paper aims to discuss problems of power and energy losses in a double-circuit overhead transmission line. It was observed from energy meters’ readings, that in such a line…

Abstract

Purpose

The paper aims to discuss problems of power and energy losses in a double-circuit overhead transmission line. It was observed from energy meters’ readings, that in such a line, active power losses can be measured as “negative”. The “negative” active power losses appear when the active power injected to the circuit is lower than the active power received at the circuit end. The purpose of this paper is to explain this phenomenon.

Design/methodology/approach

Theoretical considerations based on mathematical model of the transmission line of π-type confirming that effect are presented. Power losses related to series impedance of the line and to shunt admittance are calculated. The theoretical considerations are confirmed by measurements done on the real transmission line.

Findings

The calculations allow to indicate components of the active power losses, i.e. related to electromagnetic coupling among wires of a given circuit, related to electromagnetic coupling between circuits and related to shunt capacitance asymmetry. The authors indicate the influence of the line/wires geometry on the active power losses in a double-circuit overhead transmission line.

Originality/value

Explanation of the effect of “negative” active power losses’ measurement in a double-circuit overhead transmission line is provided in this paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 5 of 5