Search results

1 – 1 of 1
Article
Publication date: 7 August 2017

Wojciech Filipowski, Zbigniew Pruszowski, Krzysztof Waczynski, Piotr Kowalik and Jan Kulawik

The paper aims to present a research on the impact of the stabilization process of a thin metallic layer (Ni-P) produced on a ceramic surface (Al2O3) by means of electroless…

Abstract

Purpose

The paper aims to present a research on the impact of the stabilization process of a thin metallic layer (Ni-P) produced on a ceramic surface (Al2O3) by means of electroless metallization on its electric parameters and structure. On the basis of the research conducted, the existence of a relationship between resistance (R) and the temperature coefficient of resistance (TCR) of the test structure with a Ni-P alloy-based layer and the temperature of stabilization was proposed.

Design/methodology/approach

Metallic Ni-P layers were deposited on sensitized and activated substrates. Metallization was conducted in an aqueous solution containing two primary ingredients: sodium hypophosphite and nickel chloride. The concentration of both ingredients was (50-70) g/dm3. The process lasted 60 min, and the metallization bath pH was kept at 2.1-2.2, whereas the temperature was maintained at 363 K. The thermal stabilization process was conducted in different temperatures between 453 and 623 K. After the technological processes, the resistance and TCR of the test structures were measured with a micro ohmmeter. The composition and the morphology of the resistive layer of the structures examined was also determined.

Findings

The dependence of the resistance on the temperature of the stabilization process for the temperature range 553 to 623 K was described using mathematical relationships. The TCR of test resistors at the same thermal stabilization temperature range was also described using a mathematical equation. The measurements show that the resistive layer contains 82.01 at.% of nickel (Ni) and 17.99 at.% of phosphorus (P).

Originality/value

The results associate a surface morphology Ni-P alloy with the resistance and TCR according to temperature stabilization. The paper presents mathematical relationships that have not been described in the literature available.

Details

Microelectronics International, vol. 34 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Access

Year

Content type

Article (1)
1 – 1 of 1