Search results

1 – 10 of over 2000
Article
Publication date: 28 March 2024

Jing Liang, Ming Li and Xuanya Shao

The purpose of this study is to explore the impact of online reviews on answer adoption in virtual Q&A communities, with an eye toward extending knowledge exchange and community…

Abstract

Purpose

The purpose of this study is to explore the impact of online reviews on answer adoption in virtual Q&A communities, with an eye toward extending knowledge exchange and community management.

Design/methodology/approach

Online reviews contain rich cognitive and emotional information about community members regarding the provided answers. As feedback information on answers, it is crucial to explore how online reviews affect answer adoption. Based on signaling theory, a research model reflecting the influence of online reviews on answer adoption is established and empirically examined by using secondary data with 69,597 Q&A data and user data collected from Zhihu. Meanwhile, the moderating effects of the informational and emotional consistency of reviews and answers are examined.

Findings

The negative binomial regression results show that both answer-related signals (informational support and emotional support) and answerers-related signals (answerers’ reputations and expertise) positively impact answer adoption. The informational consistency of reviews and answers negatively moderates the relationships among information support, emotional support and answer adoption but positively moderates the effect of answerers’ expertise on answer adoption. Furthermore, the emotional consistency of reviews and answers positively moderates the effect of information support and answerers’ reputations on answer adoption.

Originality/value

Although previous studies have investigated the impacts of answer content, answer source credibility and personal characteristics of knowledge seekers on answer adoption in virtual Q&A communities, few have examined the impact of online reviews on answer adoption. This study explores the impacts of informational and emotional feedback in online reviews on answer adoption from a signaling theory perspective. The results not only provide unique ideas for community managers to optimize community design and operation but also inspire community users to provide or utilize knowledge, thereby reducing knowledge search costs and improving knowledge exchange efficiency.

Article
Publication date: 19 January 2024

Ming Li and Jing Liang

Knowledge adoption is the key to effective knowledge exchange in virtual question-and-answer (Q&A) communities. Although previous studies have examined the effects of knowledge…

Abstract

Purpose

Knowledge adoption is the key to effective knowledge exchange in virtual question-and-answer (Q&A) communities. Although previous studies have examined the effects of knowledge content, knowledge source credibility and the personal characteristics of knowledge seekers on knowledge adoption in virtual Q&A communities from a static perspective, the impact of answer deviation on knowledge adoption has rarely been explored from a context-based perspective. The purpose of this study is to explore the impact of two-way deviation on knowledge adoption in virtual Q&A communities, with the aim of expanding the understanding of knowledge exchange and community management.

Design/methodology/approach

The same question and the same answerer often yield multiple answers. Knowledge seekers usually read multiple answers to make adoption decisions. The impact of deviations among answers on knowledge seekers' knowledge adoption is critical. From a context-based perspective, a research model of the impact of the deviation of horizontal and vertical answers on knowledge adoption is established based on the heuristic-systematic model (HSM) and empirically examined with 88,287 Q&A data points and answerer data collected from Zhihu. Additionally, the moderation effects of static factors such as answerer reputation and answer length are examined.

Findings

The negative binomial regression results show that the content and emotion deviation of horizontal answers negatively affect knowledge seekers' knowledge adoption. The content deviation of vertical answers is negatively associated with knowledge adoption, while the emotion deviation of vertical answers is positively related to knowledge adoption. Moreover, answerer reputation positively moderates the negative effect of the emotion deviation of horizontal answers on knowledge adoption. Answer length weakens the negative correlation between the content deviation of horizontal and vertical answers and knowledge adoption.

Originality/value

This study extends previous research on knowledge adoption from a static perspective to a context-based perspective. Moreover, information deviation is expanded from a one-way variable to a two-way variable. The combined effects of static and contextual factors on knowledge adoption are further uncovered. This study can not only help knowledge seekers identify the best answers but also help virtual Q&A community managers optimize community design and operation to reduce the cost of knowledge search and improve the efficiency of knowledge exchange.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 25 April 2024

Mohammed Messadi, Larbi Hadjout and Noureddine Takorabet

This paper aims to develop a new 3D analytical model in cylindrical coordinates to study radial flux eddy current couplers (RFECC) while considering the magnetic edge and 3D…

Abstract

Purpose

This paper aims to develop a new 3D analytical model in cylindrical coordinates to study radial flux eddy current couplers (RFECC) while considering the magnetic edge and 3D curvature effects, and the field reaction due to the induced currents.

Design/methodology/approach

The analytical model is developed by combining two formulations. A magnetic scalar potential formulation in the air and the magnets regions and a current density formulation in the conductive region. The magnetic field and eddy currents expressions are obtained by solving the 3D Maxwell equations in 3D cylindrical coordinates with the variable separation method. The torque expression is derived from the field solution using the Maxwell stress tensor. In addition to 3D magnetic edge effects, the proposed model takes into account the reaction field effect due to the induced currents in the conducting part. To show the accuracy of the developed 3D analytical model, its results are compared to those from the 3D finite element simulation.

Findings

The obtained results prove the accuracy of the new developed 3D analytical model. The comparison of the 3D analytical model with the 2D simulation proves the strong magnetic edge effects impact (in the axial direction) in these devices which must be considered in the modelling. The new analytical model allows the magnetic edge effects consideration without any correction factor and also presents a good compromise between precision and computation time.

Practical implications

The proposed 3D analytical model presents a considerably reduced computation time compared to 3D finite element simulation which makes it efficient as an accurate design and optimization tool for radial flux eddy current devices.

Originality/value

A new analytical model in 3D cylindrical coordinates has been developed to find the electromagnetic torque in radial flux eddy current couplers. This model considers the magnetic edge effects, the 3D curvature effects and the field reaction (without correction factors) while improving the computation time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 August 2023

Kang-Jia Wang

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Abstract

Purpose

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Design/methodology/approach

By means of the Cole–Hopf transform, the bilinear form of the studied equation is extracted. Then the ansatz function method combined with the symbolic computation is implemented to construct the breather, multiwave and the interaction wave solutions. In addition, the subequation method tis also used to search for the diverse travelling wave solutions.

Findings

The breather, multiwave and the interaction wave solutions and other wave solutions like the singular periodic wave structure and dark wave structure are obtained. To the author’s knowledge, the solutions obtained are all new and have never been reported before.

Originality/value

The solutions obtained in this work have never appeared in other literature and can be regarded as an extension of the solutions for the new (3 + 1)-dimensional integrable fourth-order nonlinear equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 February 2024

Ehab Samir Mohamed Mohamed Soliman

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this…

34

Abstract

Purpose

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.

Design/methodology/approach

The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.

Findings

Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.

Originality/value

This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 October 2023

Reetu Yadav, Mamta Kushwah, Anna Nikolaevna Berlina and Mulayam Singh Gaur

The purpose of this study is determination of cadmium using silver-gold bimetallic nanoparticles (Ag-Au BMNPs) and an aptamer modified glassy carbon electrode.

Abstract

Purpose

The purpose of this study is determination of cadmium using silver-gold bimetallic nanoparticles (Ag-Au BMNPs) and an aptamer modified glassy carbon electrode.

Design/methodology/approach

The maximum response of modified electrode was obtained with, 50 mV pulse amplitude, 20 mV/s scan rate in phosphate buffer of pH 4.0. Ag-Au BMNPs, as the mediators improved electron transmit during the entire electron transfer process and the aptasensor response. Herein, the authors used aptamer as the capture probe to prepare an aptasensor with enhanced stability.

Findings

The proposed aptasensor exhibited a wide linearity to cadmium in the range of 0.001–0.100 µg/L with a low detection limit of 0.005×10−3 µg/L. The glassy carbon electrodes with Ag-Au BMNPs showed a lower detection limit.

Originality/value

This aptasensor has good reproducibility, stability and repeatability and is cost-effective to regenerate. The specificity and selectivity of the novel modified electrode is tested in the presence of other interfering metal ions such as Fe2+, Mn2+, Mg2+, Sb3+ and Bi3+. The aptasensor shows 10 times more sensitivity and selectivity for Cd2+ ions.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 March 2024

Yuehua Zhao, Linyi Zhang, Chenxi Zeng, Yidan Chen, Wenrui Lu and Ningyuan Song

This study aims to address the growing importance of online health information (OHI) and the associated uncertainty. Although previous research has explored factors influencing…

113

Abstract

Purpose

This study aims to address the growing importance of online health information (OHI) and the associated uncertainty. Although previous research has explored factors influencing the credibility of OHI, results have been inconsistent. Therefore, this study aims to identify the essential factors that influence the perceived credibility of OHI by conducting a meta-analysis of articles published from 2010 to 2022. The study also aims to examine the moderating effects of demographic characteristics, study design and the platforms where health information is located.

Design/methodology/approach

Based on the Prominence-Interpretation Theory (PIT), a meta-analysis of 25 empirical studies was conducted to explore 12 factors related to information content and source, social interaction, individual and media affordance. Moderators such as age, education level, gender of participants, sample size, platforms and research design were also examined.

Findings

Results suggest that all factors, except social support, have significant effects on the credibility of OHI. Among them, argument quality had the strongest correlation with credibility and individual factors were also found to be relevant. Moderating effects indicate that social support was significantly moderated by age and education level. Different sample sizes may lead to variations in the role of social endorsement, while personal involvement was moderated by sample size, platform and study design.

Originality/value

This study enriches the application of PIT in the health domain and provides guidance for scholars to expand the scope of research on factors influencing OHI credibility.

Details

Aslib Journal of Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 December 2022

Salma Jnayah and Adel Khedher

The direct torque control (DTC) of induction motor (IM) drive is featured by high ripples in the electromagnetic torque and stator flux profiles because they are controlled by two…

Abstract

Purpose

The direct torque control (DTC) of induction motor (IM) drive is featured by high ripples in the electromagnetic torque and stator flux profiles because they are controlled by two hysteresis regulators. Furthermore, the machine flux is not directly measurable. Hence, it is better to reconstitute it from the instantaneous electrical equations of the machine. Once the stator flux is estimated, we can guarantee a reliable sensorless DTC control. Thus, the purpose of this research work is to ensure fast response and full reference tracking of the IM under sensorless DTC strategy with desired dynamic behavior and low ripple levels.

Design/methodology/approach

In this work, an improved DTC strategy, which is DTC_SVM_3L, is suggested. The first step of the designed approach is to substitute the conventional inverter feeding the motor with a three-level inverter because it guarantees reduced switching losses, improved quality of voltage waveform and low-current total harmonic distortion rate. The second aim of this paper is to make the IM operate at a constant switching frequency by using the nearest three vectors-based space vector modulation (SVM) technique rather than hysteresis controllers. The third objective of this study is to conceive a sliding-mode stator flux observer, which can improve the control performances by using a sensorless algorithm to get an accurate estimation, and consequently, increase the reliability of the system and decrease the cost of using sensors. The stability of the proposed observer is demonstrated based on the Lyapunov theory. To overcome the load change disturbance in the proposed DTC control strategy, this paper exhibits a comparative assessment of four speed regulation methods: classical proportional and integral (PI) regulator, fuzzy logic PI controller, particle swarm optimization PI controller and backstepping regulator. The entire control algorithm was tested under different disturbances such as stator resistance and load torque variations.

Findings

It was ascertained that the IM, controlled with three-level inverter, exhibits good performances under the proposed DTC-SVM strategy based on a sliding-mode observer. The robustness of the suggested approach against parameter variations is also proved.

Originality/value

The theoretical development of the proposed control strategy is thoroughly described. Then, simulations using Matlab/Simulink software are launched to investigate the merits of the sensorless DTC-SVM command of three-level inverter-fed IM drive with different speed regulators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 2000