Search results

1 – 10 of over 45000
Article
Publication date: 9 August 2022

Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang

Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…

Abstract

Purpose

Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.

Design/methodology/approach

Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.

Findings

The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.

Originality/value

By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.

Details

Grey Systems: Theory and Application, vol. 12 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 March 2020

Qingbing Chang, Jun Zhang and Zongjin Ren

The purpose of this paper is to solve the problem that the relationship between loading forces, which were applied at different positions on a plane, and output values of…

Abstract

Purpose

The purpose of this paper is to solve the problem that the relationship between loading forces, which were applied at different positions on a plane, and output values of load-sharing dynamometer is non-linear.

Design/methodology/approach

First, the analytical model of ISPM (isodynamic surface proportional mapping method) method, which is used to calibrate dynamometer, was established. Then, a series of axial force calibration tests were performed on a load-sharing dynamometer at different loading positions. Finally, according to output values, calibration forces at different loading positions were calculated by ISPM method, and corresponding distribution histogram of calibration force error was generated.

Findings

The largest error between calculated force and standard force is 2.92 per cent, and the probability of calculated force error within 1 per cent is 91.03 per cent, which verify that the ISPM method is reliable for non-linear calibration of dynamometers.

Originality/value

The proposed ISPM method can achieve non-linear calibration between measured force and output signal of load-sharing dynamometer at different positions. In addition, ISPM method can also solve some complex non-linear problems, such as prediction of plane cutting force under the influence of multiple parameters, the force measurement of multi-degree-of-freedom platform and so on.

Article
Publication date: 3 November 2023

Dongdong Song, Wenxiang Qin, Qian Zhou, Dong Xu and Bo Zhang

The anticorrosion coatings used in marine and atmospheric environment are subjected to many environmental factors. And the aging failure has been puzzling researchers. The purpose…

Abstract

Purpose

The anticorrosion coatings used in marine and atmospheric environment are subjected to many environmental factors. And the aging failure has been puzzling researchers. The purpose of this study is to find the correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors.

Design/methodology/approach

The epoxy coatings were subjected to a one-year exposure in three typical marine atmospheres. Meanwhile, principal component analysis, linear regression and Spearman and gray correlation analysis were applied to quantify the environmental characteristics and establish correlations with the coating aging.

Findings

The results indicate that the coating will undergo macroscopic fading and chalking upon exposure to the marine atmosphere, while microscopic examination reveals holes, cracks and partial peeling. The adhesion performance and electrochemical properties of the coating deteriorated with prolonged exposure, coating aging mainly occurs with the generation of O-H bonds and the breakage of molecular chains such as C-N and C-O-C. The coating was most deeply aged after exposure to the Xisha, followed by Zhoushan and finally Qingdao. Environmental factors affect the photooxidative aging and hydrolytic degradation processes of coatings and thus coating aging. To further demonstrate the correlation between environmental factors and coating aging, principal component analysis was used. The correlation model between environmental factors and coating aging was subsequently obtained. The correlation model between the rate of coating adhesion loss (E) and the comprehensive evaluation parameter of environmental factors (Z) is expressed as E = 0.142 + 0.028Z. Meanwhile, the Spearman correlation analysis and gray correlation method were used to investigate the impact of each environmental factor on coating aging. Solar irradiation, relative humidity and wetting time have the highest correlation with coating aging, which are all above 0.8 and have the greatest influence on coating aging; wind speed and temperature have the smallest correlation with coating aging, which are about 0.6 and have the least influence on coating aging.

Originality/value

This paper establishes a correlation between typical marine environmental factors and coating aging performance, which is crucial for predicting the service life of other coatings in diverse environments.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 October 2020

Qiushuang Zhang, Xin Jin, Zhihua Liu, Zhijing Zhang, Yan Fang, Zhongqing Zhang and Yann Ledoux

The modern manufacturing industry has put forward higher requirements for the assembly accuracy of components with the development of the industrial technology. For precision…

Abstract

Purpose

The modern manufacturing industry has put forward higher requirements for the assembly accuracy of components with the development of the industrial technology. For precision assembly, the traditional assembly process study based on tolerance has had difficulty in meeting these requirements. Hence, the distribution of the form errors must be considered. The registration between the two mating surfaces with form errors determines the parts’ assembly position, and is the basis for the prediction and control of the assembly accuracy. This study aims to provide a new surfaces registration method which takes form errors into consideration.

Design/methodology/approach

This study presents a new registration approach based on the minimum potential energy. A unique set of contact points on mating surfaces that meet the actual conditions can be obtained and the spatial position of the assembled part is calculated.

Findings

The experimental results show that the calculated values are in good agreement with the experimental values. Furthermore, the root mean square error is within 2%, which proves the validity and accuracy of the approach.

Originality/value

This paper provides an effective and new method for precision assembly which takes form errors into consideration. The method can give the optimal solution of the contact points, which is more consistent with the actual assembly situation and provides a basis for predicting assembly accuracy.

Details

Assembly Automation, vol. 40 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 December 2021

Yunpu Zhang, Gongguo Xu and Ganlin Shan

Continuous and stable tracking of the low-altitude maneuvering targets is usually difficult due to terrain occlusion and Doppler blind zone (DBZ). This paper aims to present a…

Abstract

Purpose

Continuous and stable tracking of the low-altitude maneuvering targets is usually difficult due to terrain occlusion and Doppler blind zone (DBZ). This paper aims to present a non-myopic scheduling method of multiple radar sensors for tracking the low-altitude maneuvering targets. In this scheduling problem, the best sensors are systematically selected to observe targets for getting the best tracking accuracy under maintaining the low intercepted probability of a multi-sensor system.

Design/methodology/approach

First, the sensor scheduling process is formulated within the partially observable Markov decision process framework. Second, the interacting multiple model algorithm and the cubature Kalman filter algorithm are combined to estimate the target state, and the DBZ information is applied to estimate the target state when the measurement information is missing. Then, an approximate method based on a cubature sampling strategy is put forward to calculate the future expected objective of the multi-step scheduling process. Furthermore, an improved quantum particle swarm optimization (QPSO) algorithm is presented to solve the sensor scheduling action quickly. Optimization problem, an improved QPSO algorithm is presented to solve the sensor scheduling action quickly.

Findings

Compared with the traditional scheduling methods, the proposed method can maintain higher target tracking accuracy with a low intercepted probability. And the proposed target state estimation method in DBZ has better tracking performance.

Originality/value

In this paper, DBZ, sensor intercepted probability and complex terrain environment are considered in sensor scheduling, which has good practical application in a complex environment.

Article
Publication date: 21 March 2016

Jian Fang, Tao Mei, Jianghai Zhao and Tao Li

The purpose of this paper is to present a dual-mode online optimization method (OOM) for trajectory tracking of the redundant manipulators. This method could be used to resolve…

Abstract

Purpose

The purpose of this paper is to present a dual-mode online optimization method (OOM) for trajectory tracking of the redundant manipulators. This method could be used to resolve the problem of the kinematics redundancy effectively when the manipulator moves in a limited space or its movements go through a singular point.

Design/methodology/approach

In the proposed method, the physical limits of the manipulator in the torque level is considered as inequality constraints for the optimal scheme. Besides, a dual-mode optimal scheme is developed to yield a feasible input in each control period during the path tracking task of the manipulator, especially when it moves under the limited space or around the singular point. Then, the scheme is formulated as a quadratic programming; the computationally efficient quadratic programming solver based on interior method is formulated to solve the kinematic redundancy problem.

Findings

The traditional pseudo inverse method (PIM) for the kinematic resolution to the redundant manipulator has some limitations, such as slow computation speed, unable to take joint physical limits into consideration, etc. Relatively, the OOM could be used to conquer the deficits of the PIM method. Combining with the dual-mode optimal scheme and considering the physical constraints in the torque level, the online method proposed in this paper is more robust and efficient than the existing method.

Originality/value

In this paper, dual-mode OOM is first proposed for the resolution of the kinematics redundancy problem. Specific design of its model and the discussion of its performance are also presented in this paper.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 July 2019

Xinbo Yu, Shuang Zhang, Liang Sun, Yu Wang, Chengqian Xue and Bin Li

This paper aims to propose cooperative control strategies for dual-arm robots in different human–robot collaborative tasks in assembly processes. The authors set three different…

Abstract

Purpose

This paper aims to propose cooperative control strategies for dual-arm robots in different human–robot collaborative tasks in assembly processes. The authors set three different regions where robot performs different collaborative ways: “teleoperate” region, “co-carry” region and “assembly” region. Human holds the “master” arm of dual-arm robot to operate the other “follower” arm by our proposed controller in “teleoperation” region. Limited by the human arm length, “follower” arm is teleoperated by human to carry the distant object. In the “co-carry” region, “master” arm and “follower” arm cooperatively carry the object to the region close to the human. In “assembly” region, “follower” arm is used for fixing the object and “master” arm coupled with human is used for assembly.

Design/methodology/approach

A human moving target estimated method is proposed for decreasing efforts for human to move “master” arm, radial basis functions neural networks are used to compensate for uncertainties in dynamics of both arms. Force feedback is designed in “master” arm controller for human to perceive the movement of “follower” arm. Experimental results on Baxter robot platform show the effectiveness of this proposed method.

Findings

Experimental results on Baxter robot platform show the effectiveness of our proposed methods. Different human-robot collaborative tasks in assembly processes are performed successfully under our cooperative control strategies for dual-arm robots.

Originality/value

In this paper, cooperative control strategies for dual-arm robots have been proposed in different human–robot collaborative tasks in assembly processes. Three different regions where robot performs different collaborative ways are set: “teleoperation” region, “co-carry” region and “assembly” region.

Article
Publication date: 4 April 2023

Weijie Zhou, Jianhua Zhu and Ce Zhang

This paper aims to introduce corporate social responsibility into the green supply chain and analyse the impact of different decision makers’ decision-making schemes on carbon…

Abstract

Purpose

This paper aims to introduce corporate social responsibility into the green supply chain and analyse the impact of different decision makers’ decision-making schemes on carbon emission reduction in the supply chain.

Design/methodology/approach

This study uses a two-stage low-carbon supply chain composed of a manufacturer and retailer as the research object. It uses the Stackelberg game model to analyse optimal carbon emission reduction and its influence under different decision-making modes.

Findings

Increased consumer green preferences and trust can improve the manufacturing enterprises’ carbon emission reduction rate. The carbon emission reduction rate decreases with increased green innovation costs. When green technology innovation costs remain constant, the greater the market capacity, the higher the carbon emission reduction rate. Market capacity has the most significant impact on the optimal carbon emission reduction rate without considering social responsibility decisions and has the least impact on the optimal carbon emission reduction rate while fully considering the social responsibility decision. To achieve decarbonisation production, the market capacity must be small, and when green innovation costs are high, it is the optimal choice without considering social responsibility. To achieve a higher level of carbon emission reduction, when the market capacity is low and the research and development cost is high or when the market capacity is large, it is the optimal choice.

Originality/value

The results provide scientific policy decisions and management significance for governments and enterprises in low-carbon subsidies and supply chain management. The findings also provide a basis for future theoretical research and enterprise practice.

Details

Chinese Management Studies, vol. 18 no. 2
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 11 September 2020

Yidu Zhang, Yongshou Liu and Qing Guo

This paper aims to develop a method for evaluating the failure probability and global sensitivity of multiple failure modes based on convex-probability hybrid uncertainty.

Abstract

Purpose

This paper aims to develop a method for evaluating the failure probability and global sensitivity of multiple failure modes based on convex-probability hybrid uncertainty.

Design/methodology/approach

The uncertainty information of the input variable is considered as convex-probability hybrid uncertainty. Moment-independent variable global sensitivity index based on the system failure probability is proposed to quantify the effect of the input variable on the system failure probability. Two-mode sensitivity indices are adopted to characterize the effect of each failure mode on the system failure probability. The method based on active learning Kriging (ALK) model with a truncated candidate regions (TCR) is adopted to evaluate the systems failure probability, as well as sensitivity index and this method is termed as ALK-TCR.

Findings

The results of five examples demonstrate the effectiveness of the sensitivity index and the efficiency of the ALK-TCR method in solving the problem of multiple failure modes based on the convex-probability hybrid uncertainty.

Originality/value

Convex-probability hybrid uncertainty is considered on system reliability analysis. Moment-independent variable sensitivity index based on the system failure probability is proposed. Mode sensitivity indices are extended to hybrid uncertain reliability model. An effective global sensitivity analysis approach is developed for the multiple failure modes based on convex-probability hybrid uncertainty.

1 – 10 of over 45000