Search results

1 – 10 of over 49000
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 September 2021

Xu Zou, Zhenbao Liu, HongGang Gao and Wen Zhao

This study aims to deal with the problem of trajectory tracking control for the quadrotor under external environmental disturbance and variable payloads.

Abstract

Purpose

This study aims to deal with the problem of trajectory tracking control for the quadrotor under external environmental disturbance and variable payloads.

Design/methodology/approach

In the field of unmanned aerial vehicle (UAV) control, external environmental disturbance and internal variable payloads as two major interference factors lead to control performance degradation or even instability, thus a trajectory tracking controller which innovatively combines sliding mode control technology and model-free control technique is proposed. The proposed controller is constructed with a learning rate-based sliding mode controller and an ultra-local model. Based on the proposed controller, the nonlinear system model of variable load quadrotor is locally estimated and the system’s uncertainties and disturbances can be compensated.

Findings

The simulation and actual test results demonstrate the satisfactory control performance and the robustness of the proposed controller compared with the PID and Backstepping controller under external environmental disturbance and variable payloads. Moreover, the proposed controller solves the trajectory tracking control problem not only when payloads change at the center of gravity but also when the position of load variation deviates from the center of gravity.

Practical implications

In both military and civilian domains, the quadrotor may encounter such situations that the payloads change, such as transporting goods, aerial refueling and so on. As a large internal interference factor, variable load tends to lead to unstable control. The research results provide theoretical guidance and technical support for trajectory tracking control of quadrotor under variable payloads.

Originality/value

The proposed controller combines learning rate-based sliding mode controller and model-free control technique to achieve a more efficient and accurate trajectory control of the quadrotor when considering system uncertainties and the load variation that happens in the unknown location.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 May 2021

P.S. Liu and X.M. Ma

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings…

Abstract

Purpose

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings in engineering applications.

Design/methodology/approach

With the octahedral structure model proposed by the present authors themselves, the fundamentally mechanical relations have been systematically studied for reticular metal foams with open cells in their previous works. On this basis, such model theory is continually used to investigate the failure mode of this kind of porous materials under compression, bending, torsion and shearing, which are common loading forms in engineering applications.

Findings

The pore-strut of metal foams under different compressive loadings will fail in the tensile breaking mode when it is brittle. While it is ductile, it will tend to the shearing failure mode when the shearing strength is half or nearly half of the tensile strength for the corresponding dense material and to the tensile breaking mode when the shearing strength is higher than half of the tensile strength to a certain value. The failure modes of such porous materials under bending, torsional and shearing loads are also similarly related to their material species.

Originality/value

This paper presents a distinctive method to conveniently analyze and estimate the failure mode of metal foams under different loadings in engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 November 2021

Mehdi Dehghan, Baharak Hooshyarfarzin and Mostafa Abbaszadeh

This study aims to use the polynomial approximation method based on the Pascal polynomial basis for obtaining the numerical solutions of partial differential equations. Moreover…

Abstract

Purpose

This study aims to use the polynomial approximation method based on the Pascal polynomial basis for obtaining the numerical solutions of partial differential equations. Moreover, this method does not require establishing grids in the computational domain.

Design/methodology/approach

In this study, the authors present a meshfree method based on Pascal polynomial expansion for the numerical solution of the Sobolev equation. In general, Sobolev-type equations have several applications in physics and mechanical engineering.

Findings

The authors use the Crank-Nicolson scheme to discrete the time variable and the Pascal polynomial-based (PPB) method for discretizing the spatial variables. But it is clear that increasing the value of the final time or number of time steps, will bear a lot of costs during numerical simulations. An important purpose of this paper is to reduce the execution time for applying the PPB method. To reach this aim, the proper orthogonal decomposition technique has been combined with the PPB method.

Originality/value

The developed procedure is tested on various examples of one-dimensional, two-dimensional and three-dimensional versions of the governed equation on the rectangular and irregular domains to check its accuracy and validity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2022

Qing-Yun Deng, Shun-Peng Zhu, Jin-Chao He, Xue-Kang Li and Andrea Carpinteri

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain…

Abstract

Purpose

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain state. Hence, this study aims how to effectively evaluate the multiaxial random/variable amplitude fatigue life.

Design/methodology/approach

Recent studies on critical plane method under multiaxial random/variable amplitude loading are reviewed, and the computational framework is clearly presented in this paper.

Findings

Some basic concepts and latest achievements in multiaxial random/variable amplitude fatigue analysis are introduced. This review summarizes the research status of four main aspects of multiaxial fatigue under random/variable amplitude loadings, namely multiaxial fatigue criterion, method for critical plane determination, cycle counting method and damage accumulation criterion. Particularly, the latest achievements of multiaxial random/variable amplitude fatigue using critical plane methods are classified and highlighted.

Originality/value

This review attempts to provide references for further research on multiaxial random/variable amplitude fatigue and to promote the development of multiaxial fatigue from experimental research to practical engineering application.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 August 2022

Shaoguang Zhang, Sifeng Liu, Zhigeng Fang, Qin Zhang and Jingru Zhang

Financial performance has been paid attention at an unprecedented level, which can be confirmed as a fact that the quantitative expansion of financial performance evaluation work…

3254

Abstract

Purpose

Financial performance has been paid attention at an unprecedented level, which can be confirmed as a fact that the quantitative expansion of financial performance evaluation work. The purpose of this study is to propose a more appropriate model for financial performance evaluation under the unbalanced development.

Design/methodology/approach

This paper introduces the differentiation criteria to eliminate the deviation caused by the same principle for multiple performance evaluation objects whose development are unbalanced; Then the generalized grey number is adopted to describe the value of performance evaluation index; and the information entropy weight is used to obtain the index weight to reduce the artificial judgment error; Finally, the generalized grey information entropy weight TOPSIS evaluation model is constructed.

Findings

Empirical research shows that in the new evaluation model, the differentiated possibility function effectively eliminates the deviation caused by the same principle, the application of information entropy weight reduces the human judgment error, and the value of generalized grey number further enhances the closeness of the results. Moreover, it is also found that in different scenarios, an adaptive performance evaluation model should be selected to match scientifically reasonable results.

Originality/value

The proposed model offers a solution for financial performance evaluation considering unbalanced development among cities. It can be realized by determining the differentiation possibility function matrix, and then the information entropy weight TOPSIS evaluation model can be constructed. This model reflects the actual situation, improves the performance evaluation accuracy, and can be used under similar conditions.

Details

Kybernetes, vol. 52 no. 11
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 2 March 2023

Xiaojun Wu, Bo Liu, Peng Li and Yunhui Liu

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the…

Abstract

Purpose

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the results when several three-dimensional (3D) scanners are involved. Thus, this study aims to provide a unified step for different laser-line length calibration requirements for laser profile measurement (LPM) systems.

Design/methodology/approach

3D LPM is the process of converting physical objects into 3D digital models, wherein camera laser-plane calibration is critical for ensuring system precision. However, conventional calibration methods for 3D LPM typically use a calibration target to calibrate the system for a single laser-line length, which needs multiple calibration patterns and makes the procedure complicated. In this paper, a unified calibration method was proposed to automatically calibrate the camera laser-plane parameters for the LPM systems with different laser-line lengths. The authors designed an elaborate planar calibration target with different-sized rings that mounted on a motorized linear platform to calculate the laser-plane parameters of the LPM systems. Then, the camera coordinates of the control points are obtained using the intersection line between the laser line and the planar target. With a new proposed error correction model, the errors caused by hardware assembly can be corrected. To validate the proposed method, three LPM devices with different laser-line lengths are used to verify the proposed system. Experimental results show that the proposed method can calibrate the LPM systems with different laser-line lengths conveniently with standard steps.

Findings

The repeatability and accuracy of the proposed calibration prototypes were evaluated with high-precision workpieces. The experiments have shown that the proposed method is highly adaptive and can automatically calibrate the LPM system with different laser-line lengths with high accuracy.

Research limitations/implications

In the repeatability experiments, there were errors in the measured heights of the test workpieces, and this is because the laser emitter had the best working distance and laser-line length.

Practical implications

By using this proposed method and device, the calibration of the 3D scanning laser device can be done in an automatic way.

Social implications

The calibration efficiency of a laser camera device is increased.

Originality/value

The authors proposed a unified calibration method for LPM systems with different laser-line lengths that consist of a motorized linear joint and a calibration target with elaborately designed ring patterns; the authors realized the automatic parameter calibration.

Details

Robotic Intelligence and Automation, vol. 43 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 22 February 2021

Changhai Lin, Sifeng Liu, Zhigeng Fang and Yingjie Yang

The purpose of this paper is to analyze the spectral characteristics of moving average operator and to propose a novel time-frequency hybrid sequence operator.

Abstract

Purpose

The purpose of this paper is to analyze the spectral characteristics of moving average operator and to propose a novel time-frequency hybrid sequence operator.

Design/methodology/approach

Firstly, the complex data is converted into frequency domain data by Fourier transform. An appropriate frequency domain operator is constructed to eliminate the impact of disturbance. Then, the inverse Fourier transform transforms the frequency domain data in which the disturbance is removed, into time domain data. Finally, an appropriate moving average operator of N items is selected based on spectral characteristics to eliminate the influence of periodic factors and noise.

Findings

Through the spectrum analysis of the real-time data sensed and recorded by microwave sensors, the spectral characteristics and the ranges of information, noise and shock disturbance factors in the data can be clarified.

Practical implications

The real-time data analysis results for a drug component monitoring show that the hybrid sequence operator has a good effect on suppressing disturbances, periodic factors and noise implied in the data.

Originality/value

Firstly, the spectral analysis of moving average operator and the novel time-frequency hybrid sequence operator were presented in this paper. For complex data, the ideal effect is difficult to achieve by applying the frequency domain operator or time domain operator alone. The more satisfactory results can be obtained by time-frequency hybrid sequence operator.

Details

Grey Systems: Theory and Application, vol. 12 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 30 August 2010

Jiang Qin and Björn Albin

Due to social transformation in China, more than 100,000,000 people are migrating within the country. Many parents are forced to leave their children behind when they migrate. In…

Abstract

Due to social transformation in China, more than 100,000,000 people are migrating within the country. Many parents are forced to leave their children behind when they migrate. In 2008, 58,000,000 children were living as left‐behind children, mainly in the rural parts of China (Zhang, 2009).Migration and its accompanying stressors may affect the mental health of the left‐behind children. This unique literature review of Chinese literature summarises the present state of knowledge and reviews the influential factors. Possible approaches to intervention and system reforms are discussed.A literature review was performed of published studies between 2001 and 2008. Databases used were Fujian Medical University Library Interface, Chinese National Knowledge Infrastructure, Wanfang Data, and VIP Information. The Chinese word for ‘left‐behind’ was used as a key word. Books, book chapters, monographs and studies on caring were searched electronically and by hand. Altogether, 53 items were found, discussed and grouped together. Migration affected the mental health of the left‐behind children in a passive way, especially their emotions and social behaviour.There is still controversy over how serious mental health problems are among children who have been left behind. Life events, personality, coping strategies and social suppor t can be regarded as four main factors that are predictive of mental health, which provides theoretical guidance for intervention. Suppor t and prevention of mental health problems in schools, in families and in primary care should be developed and studied.

Details

Journal of Public Mental Health, vol. 9 no. 3
Type: Research Article
ISSN: 1746-5729

Keywords

Article
Publication date: 16 March 2020

Chunlei Li, Chaodie Liu, Zhoufeng Liu, Ruimin Yang and Yun Huang

The purpose of this paper is to focus on the design of automated fabric defect detection based on cascaded low-rank decomposition and to maintain high quality control in textile…

Abstract

Purpose

The purpose of this paper is to focus on the design of automated fabric defect detection based on cascaded low-rank decomposition and to maintain high quality control in textile manufacturing.

Design/methodology/approach

This paper proposed a fabric defect detection algorithm based on cascaded low-rank decomposition. First, the constructed Gabor feature matrix is divided into a low-rank matrix and sparse matrix using low-rank decomposition technique, and the sparse matrix is used as priori matrix where higher values indicate a higher probability of abnormality. Second, we conducted the second low-rank decomposition for the constructed texton feature matrix under the guidance of the priori matrix. Finally, an improved adaptive threshold segmentation algorithm was adopted to segment the saliency map generated by the final sparse matrix to locate the defect regions.

Findings

The proposed method was evaluated on the public fabric image databases. By comparing with the ground-truth, the average detection rate of 98.26% was obtained and is superior to the state-of-the-art.

Originality/value

The cascaded low-rank decomposition was first proposed and applied into the fabric defect detection. The quantitative value shows the effectiveness of the detection method. Hence, the proposed method can be used for accurate defect detection and automated analysis system.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 49000