Search results

1 – 7 of 7
Article
Publication date: 4 July 2018

Yunlong Jiao, Xiaojun Liu and Kun Liu

Dynamic spreading and wetting on the rough surfaces is complicated, which directly affects the fluxion and phrase transition properties of the fluid. This paper aims to…

Abstract

Purpose

Dynamic spreading and wetting on the rough surfaces is complicated, which directly affects the fluxion and phrase transition properties of the fluid. This paper aims to enhance our knowledge of the mechanism of micro-texture lubrication from interface wettability and provide some guidance for the practical manufacturing of the surfaces with special wettability and better lubrication characteristics.

Design/methodology/approach

The effect of surface topography on the wetting behavior of both smooth and rough hydrophilic surfaces was investigated using a combination of experimental and simulation approaches. Four types of patterns with different topographies were designed and fabricated through laser surface texturing. The samples were measured with a non-contact three-Dimensional (3D) optical profiler and were parameterized based on ISO 25178. Quantitative research on the relevancy between the topography characteristic and wettability was conducted with several 3D topography parameters.

Findings

Results show that for the surfaces with isotropic textures, topography with a small skewness (Ssk) and a large kurtosis (Sku) exhibits better wettability and spreading behavior. For the surfaces with anisotropic textures (smaller texture aspect ratio, Str), dominant textures (such as long groove, rectangle) play a significant guiding role in promoting spreading. In addition, the moving mechanism of the triple contact line and anisotropic spreading were also studied using a computational fluid dynamics simulation. The simulation results have a good adherence with the experimental results.

Originality/value

Most of the surface characterization methods at present remain at a level that is related to geometric description, and the topography parameters are limited to 2D roughness parameters. So in present study, the relevancy between wettability and 3D surface topography parameters is explored. The authors believe that the current work provides a new viewpoint to the relevancy between surface topography and wettability.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 September 2018

Yunlong Jiao, Xiaojun Liu and Kun Liu

Driving safety on a wet road is closely related to the wet skid resistance of tires. The purpose of this paper is to reveal the evolution of wet skid resistance at…

Abstract

Purpose

Driving safety on a wet road is closely related to the wet skid resistance of tires. The purpose of this paper is to reveal the evolution of wet skid resistance at different water film thicknesses and provide some guidance on the design of a tread pattern with improved traction on rainy roads.

Design/methodology/approach

Brake tests are performed in a laboratory with a viscoelastic tribotester at various water film thicknesses. The initial water film thickness is 3 mm, which decreases with an increase in the test number. Brake friction force is dynamically measured at water film thicknesses ranging from 0 mm to 3 mm.

Findings

The results show that water film thickness exerts a great influence on the forms of tire motion and slip ratio. The tire is much easier to slide on the road with thick water film and also with a considerably thin water film (about 0-1 mm) during a sharp braking process. The brake traction can be very low under this road condition despite the apparently safe quality of the road.

Originality/value

The authors design and establish a new viscoelastic tribotester which is used to simulate the real braking sliding process and study the tribological properties between tire rubber and road surface. The variation in the wet friction coefficient and slip ratio at different water film thicknesses have a great influence on the design of a tread pattern with improved traction on rainy roads.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 July 2021

Yunlong Li, Zhinong Li, Dong Wang and Zhike Peng

The purpose of this paper is to discuss the asymptotic models of different parts with a pitting fault in rolling bearings.

Abstract

Purpose

The purpose of this paper is to discuss the asymptotic models of different parts with a pitting fault in rolling bearings.

Design/methodology/approach

For rolling bearings with a pitting fault, the displacement deviation between raceways and rolling elements is usually considered to vary instantaneously. However, the deviation should change gradually. Based on this shortcoming, the variation rule and calculation method of the displacement deviation are explored. Asymptotic models of different parts with a pitting fault are discussed, respectively. Besides, rolling bearing systems have prominent fractional characteristics unconsidered in the traditional models. Therefore, fractional calculus is introduced into the modeling of rolling bearings. New dynamic asymptotic models of different parts with a pitting fault are proposed based on fractional damping. The numerical simulation is performed based on the proposed model, and the dynamic characteristics are analyzed through the bifurcation diagrams, trajectory diagrams and frequency spectrograms.

Findings

Compared with the model based on integral calculus, the proposed model can better reflect the periodic characteristics and fault characteristics of rolling bearings. Finally, the proposed model is verified by the experiment. The dynamic characteristics of rolling bearings at different rotating speeds are analyzed. The experimental results are consistent with the simulation results. Therefore, the proposed model is effective.

Originality/value

(1) The above models are idealized, i.e. the local pitting fault is treated as a rectangle. When a component comes into contact with the fault, the displacement deviation between the component and the fault component immediately releases if the component enters the fault area and restores if the component leaves. However, the displacement deviation should change gradually. Only when the component touches the fault bottom, the displacement deviation reaches the maximum. (2) Due to the material's memory and fluid viscoelasticity, rolling bearing systems exhibit significant fractional characteristics. However, the above models are all proposed based on integral calculus. Integral calculus has some local characteristics and is not suitable for describing historical dependent processes. Fractional calculus can better describe the essential characteristics of the system.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 May 2020

Yunlong Duan, Lei Huang, Hao Cheng, Lisheng Yang and Tianzhou Ren

The key to the success of multinational corporations’ (MNCs) business models is the improvement of their innovation quality. From the cross-border knowledge management…

1063

Abstract

Purpose

The key to the success of multinational corporations’ (MNCs) business models is the improvement of their innovation quality. From the cross-border knowledge management perspective, this paper aims to analyze the improvement path of innovation quality of MNCs and construct the functional path of the relationships among the knowledge creation, knowledge application and innovation quality of MNCs in the cross-border knowledge management process, so as to achieve the success of their business models. Based on this, this paper introduces cultural distance to further analyze how such relationships will change with the cultural distance level.

Design/methodology/approach

Using data from Chinese A-share listed MNCs with production operations located in the Asia-Pacific region from 2014 to 2018, this paper constructs a panel data model to test the mediating effect of knowledge application and the moderating effect of cultural distance on such relationships.

Findings

This paper obtains the following research findings: knowledge creation and knowledge application each have a significant, inverted U-shaped relationship with innovation quality; knowledge creation has a significantly positive correlation with knowledge application and knowledge application has a partial mediating effect on the relationship between knowledge creation and innovation quality; cultural distance has a moderating effect on such relationships. The specific moderating direction depends on the extent of the knowledge creation and knowledge application.

Practical implications

The findings are helpful to MNCs’ managers, providing guidance and serve as a reference for them to make strategic decisions on cross-board knowledge management and business models innovation.

Originality/value

The theoretical contributions are summarized as follows: First, it further enriches and expands the theoretical of knowledge management and innovation quality relationship. Second, it further enriches and expands the theoretical framework of knowledge management. Third, it further enriches the theoretical framework of cross-cultural management.

Details

Journal of Knowledge Management, vol. 25 no. 1
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 16 August 2021

Zhiguang Cheng, Behzad Forghani, Zhenbin Du, Lanrong Liu, Yongjian Li, Xiaojun Zhao, Tao Liu, Linfeng Cai, Weiming Zhang, Meilin Lu, Yakun Tian and Yating Li

This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside…

75

Abstract

Purpose

This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside magnetic and non-magnetic components under harmonics-direct current (HDC) hybrid excitations. As a new member-set (P21e) of the testing electromagnetic analysis methods Problem 21 Family, the focus is on efficient analysis methods and accurate material property modeling under complex excitations.

Design/methodology/approach

This P21e-based benchmarking covers the design of new benchmark models with magnetic flux compensation, the establishment of a new benchmark measurement system with HDC hybrid excitation, the formulation of the testing program (such as defined Cases I–V) and the measurement and prediction of material properties under HDC hybrid excitations, to test electromagnetic analysis methods and finite element (FE) computation models and investigate the electromagnetic behavior of typical magnetic and electromagnetic shields in electrical equipment.

Findings

The updated Problem 21 Family (V.2021) can now be used to investigate and validate the total power loss and the different shielding performance of magnetic and electromagnetic shields under various HDC hybrid excitations, including the different spatial distributions of the same excitation parameters. The new member-set (P21e) with magnetic flux compensation can experimentally determine the total power loss inside the load-component, which helps to validate the numerical modeling and simulation with confidence. The additional iron loss inside the laminated sheets caused by the magnetic flux normal to the laminations must be correctly modeled and predicted during the design and analysis. It is also observed that the magnetic properties (B27R090) measured in the rolling and transverse directions with different direct current (DC) biasing magnetic field are quite different from each other.

Research limitations/implications

The future benchmarking target is to study the effects of stronger HDC hybrid excitations on the internal loss behavior and the microstructure of magnetic load components.

Originality/value

This paper proposes a new extension of Problem 21 Family (1993–2021) with the upgraded excitation, involving multi-harmonics and DC bias. The alternating current (AC) and DC excitation can be applied at the two sides of the model’s load-component to avoid the adverse impact on the AC and DC power supply and investigate the effect of different AC and DC hybrid patterns on the total loss inside the load-component. The overall effectiveness of numerical modeling and simulation is highlighted and achieved via combining the efficient electromagnetic analysis methods and solvers, the reliable material property modeling and prediction under complex excitations and the precise FE computation model using partition processing. The outcome of this project will be beneficial to large-scale and high-performance numerical modeling.

Article
Publication date: 29 April 2022

Shuaijie Zhai, Qiaogao Feng, Hui Yang, Lijie Ma and Minghua Pang

The purpose of this paper is to study a new liquid-phase assisted texture treatment method to improve the tribological properties of 304 stainless steel.

Abstract

Purpose

The purpose of this paper is to study a new liquid-phase assisted texture treatment method to improve the tribological properties of 304 stainless steel.

Design/methodology/approach

Three groups of textured type (KY, KJ and YJ) were prepared on 304 stainless steel surface using laser circular and cross scanning method in air and liquid assisted condition. The surface morphology and element content of test samples were measured with scanning electron microscope, energy spectrum. Then, the tribological test was carried out using MWF-500 reciprocating friction and wear testing machine under dry and oil lubrication condition.

Findings

The experimental results showed that the textured surface of laser processing in air was obviously blackened, and the oxygen content was increased from 16.9% to 24%. These cases did not occur on liquid-assisted laser textured surface, which induced a better wettability and surface texture processing quality. For friction test, the friction coefficient of cross-scanning textured surface prepared in assisted liquid (YJ) was the smallest. It is reduced by 55% in oil lubrication case compared to the original surface (YS). The cross-scanning textured surface prepared in air (KJ) was a little worse in friction coefficient and a little better in wear quantity than the cross-scanning textured surface prepared in assisted liquid (YJ). It is indicated that the laser processing surface with assisted liquid has obvious advantages in surface texture quality and interfacial tribological property. The main reason is that the assisted liquid plays a role in cooling and protecting action of the machined surface. The bubbles, generated at the solid–liquid interface because of the laser heat effect, scatter the laser beam and carry out the processed melt meanwhile. The lubricating medium is easier to penetrate and store in the contact interfaces because of the higher surface textured performance and wettability.

Originality/value

The main contribution of this work is in providing a new surface texture processing method that has a better surface micropits quality and interfacial tribology regulation ability.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 30 October 2020

Siukan Law, Chuanshan Xu and Albert Wingnang Leung

The purpose of this paper is to describe and discuss the use of Chinese medicine in the prevention and treatment of coronavirus disease 2019 (COVID-19) in China and Asia.

1153

Abstract

Purpose

The purpose of this paper is to describe and discuss the use of Chinese medicine in the prevention and treatment of coronavirus disease 2019 (COVID-19) in China and Asia.

Design/methodology/approach

This paper provides a brief overview of the COVID-19. Based on the syndrome differentiation (辨證論治), the concept of clearing heat and detoxifying lung in traditional Chinese medicine is used to prevent and treat COVID-19 through restoring the vital qi (正氣) in human body and regulating the lung as well as spleen to strengthen the immune system. Traditional Chinese medicine has been used as a complementary therapy for the possible intervention of COVID-19 including traditional Chinese herbal decoctions, Chinese traditional patent medicines, acupuncture and moxibustion as well as the traditional health exercises in China and parts of Asia.

Findings

Traditional Chinese medicine plays a significant role in the prevention and treatment of COVID-19 pandemic. The infection cases of China are around 80,000 and a steady decline compared with the USA which has 5,000,000 infection cases and continuous increases. It is shown that more than 90% of patients recovered after the treatment of traditional Chinese herbal decoctions and Chinese traditional patent medicines without any side-effect compared to the use of Remdesivir (GS-5734). Acupuncture (針灸) and moxibustion (艾灸) stimulate the immune and nervous systems for preventing infectious diseases. Taichi (太極) and Baduanjin (八段錦) as the auxiliary aerobic exercise under the theory of Chinese medicine can enhance the immune system and improve the lung function. Thus, an integration of traditional Chinese Medicine and Western medicine is the best strategy for the prevention, treatment and control of COVID-19 pandemic in the future.

Originality/value

This paper describes traditional Chinese medicine as an effective way for the prevention and treatment of COVID-19.

1 – 7 of 7