Search results

1 – 1 of 1
Open Access
Article
Publication date: 12 April 2018

Chunlan Li, Jun Wang, Min Liu, Desalegn Yayeh Ayal, Qian Gong, Richa Hu, Shan Yin and Yuhai Bao

Extreme high temperatures are a significant feature of global climate change and have become more frequent and intense in recent years. These pose a significant threat to both…

1404

Abstract

Purpose

Extreme high temperatures are a significant feature of global climate change and have become more frequent and intense in recent years. These pose a significant threat to both human health and economic activity, and thus are receiving increasing research attention. Understanding the hazards posed by extreme high temperatures are important for selecting intervention measures targeted at reducing socioeconomic and environmental damage.

Design/methodology/approach

In this study, detrended fluctuation analysis is used to identify extreme high-temperature events, based on homogenized daily minimum and maximum temperatures from nine meteorological stations in a major grassland region, Hulunbuir, China, over the past 56 years.

Findings

Compared with the commonly used functions, Weibull distribution has been selected to simulate extreme high-temperature scenarios. It has been found that there was an increasing trend of extreme high temperature, and in addition, the probability of its indices increased significantly, with regional differences. The extreme high temperatures in four return periods exhibited an extreme low hazard in the central region of Hulunbuir, and increased from the center to the periphery. With the increased length of the return period, the area of high hazard and extreme high hazard increased. Topography and anomalous atmospheric circulation patterns may be the main factors influencing the occurrence of extreme high temperatures.

Originality/value

These results may contribute to a better insight in the hazard of extreme high temperatures, and facilitate the development of appropriate adaptation and mitigation strategies to cope with the adverse effects.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Access

Only Open Access

Year

Content type

1 – 1 of 1