Search results

1 – 10 of 541
Article
Publication date: 10 August 2020

Somnath Santra, Shubhadeep Mandal and Suman Chakraborty

The purpose of this study is to perform a detailed review on the numerical modeling of multiphase and multicomponent flows in microfluidic system using phase-field method. The…

1203

Abstract

Purpose

The purpose of this study is to perform a detailed review on the numerical modeling of multiphase and multicomponent flows in microfluidic system using phase-field method. The phase-field method is of emerging importance in numerical computation of transport phenomena involving multiple phases and/or components. This method is not only used to model interfacial phenomena typical to multiphase flows encountered in engineering and nature but also turns out to be a promising tool in modeling the dynamics of complex fluid-fluid interfaces encountered in physiological systems such as dynamics of vesicles and red blood cells). Intrinsically, a priori unknown topological evolution of interfaces offers to be the most concerning challenge toward accurate modeling of moving boundary problems. However, the numerical difficulties can be tackled simultaneously with numerical convenience and thermodynamic rigor in the paradigm of the phase field method.

Design/methodology/approach

The phase-field method replaces the macroscopically sharp interfaces separating the fluids by a diffuse transition layer where the interfacial forces are smoothly distributed. As against the moving mesh methods (Lagrangian) for the explicit tracking of interfaces, the phase-field method implicitly captures the same through the evolution of a phase-field function (Eulerian). In contrast to the deployment of an artificially smoothing function for the interface as used in the volume of a fluid or level set method, however, the phase-field method uses mixing free energy for describing the interface. This needs the consideration of an additional equation for an order parameter. The dynamic evolution of the system (equation for order parameter) can be described by AllenCahn or CahnHilliard formulation, which couples with the Navier–Stokes equation with the aid of a forcing function that depends on the chemical potential and the gradient of the order parameter.

Findings

In this review, first, the authors discuss the broad motivation and the fundamental theoretical foundation associated with phase-field modeling from the perspective of computational microfluidics. They subsequently pinpoint the outstanding numerical challenges, including estimations of the model-free parameters. They outline some numerical examples, including electrohydrodynamic flows, to demonstrate the efficacy of the method. Finally, they pinpoint various emerging issues and futuristic perspectives connecting the phase-field method and computational microfluidics.

Originality/value

This paper gives unique perspectives to future directions of research on this topic.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 May 2019

Xuejun Shen, Minghui Yue, Pengfei Duan, Guihai Wu and Xuerui Tan

Based on the prediction of the consumption of medical materials, the purpose of this paper is to study the applicability of the grey model method to the field and its predicted…

Abstract

Purpose

Based on the prediction of the consumption of medical materials, the purpose of this paper is to study the applicability of the grey model method to the field and its predicted accuracy.

Design/methodology/approach

The ABC classification method is used to classify medical consumables and select the analysis objects. The GM (1,1) model predicts the annual consumption of medical materials. The GM (1,1) modeling of the consumption of the selected medical materials in 2006~2017 was carried out by using the metabolite sequence and the sequence topology subsequence, respectively. The average rolling error and the average rolling accuracy are calculated to evaluate the prediction accuracy of the model.

Findings

The ABC classification results show that Class A projects, which account for only 9.79 percent of the total inventory items, occupy most of the inventory funds. Eight varieties with varying purchases and usages and complete historical data were selected for further analysis. The subsequence GM(1,1) model group constructed by two different methods predicts and scans the annual consumption of eight kinds of medical materials, and the rolling precision can reach more than 90 percent.

Originality/value

The metabolic GM (1,1) model is an ideal predictive model that can meet the requirements for a short-term prediction of medical material consumption (Zhang et al., 2014). The GM (1,1) model is more suitable for a short-term prediction of medical material consumption with less data modeling.

Details

Grey Systems: Theory and Application, vol. 9 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 August 2014

Jingwei Feng, Fengchun Tian, Pengfei Jia, Qinghua He, Yue Shen and Shu Fan

– The purpose of this paper is to detect wound infection by electronic nose (Enose) and to improve the performance of Enose.

Abstract

Purpose

The purpose of this paper is to detect wound infection by electronic nose (Enose) and to improve the performance of Enose.

Design/methodology/approach

Mice are used as experimental subjects. Orthogonal signal correction (OSC) is applied to preprocess the response of Enose. Radical basis function (RBF) network is used for discrimination, and the parameters in RBF are optimized by particle swarm optimization.

Findings

OSC is very suitable for eliminating interference and improving the performance of Enose in wound infection detection.

Research limitations/implications

Further research is required to sample wound infection dataset of human beings and to demonstrate that the Enose with proper algorithms can be used to detect wound infection.

Practical implications

In this paper, Enose is used to detect wound infection, and OSC is used to improve the performance of the Enose. This widens the application area of Enose and OSC.

Originality/value

The innovative concept paves the way for the application of Enose.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 April 2005

Yue Shen, Eddie Chi‐man Hui and Hongyu Liu

This study investigates whether there was a housing price bubble in Beijing and Shanghai in 2003. The existence of a bubble can be interpreted from (abnormal) interactions between…

4596

Abstract

Purpose

This study investigates whether there was a housing price bubble in Beijing and Shanghai in 2003. The existence of a bubble can be interpreted from (abnormal) interactions between housing prices and market fundamentals.

Design/methodology/approach

With monthly data from the two cities, this paper employs standard econometric methodologies: i.e. Granger causality tests and generalized impulse response analysis, and the reduced form of housing price determinants.

Findings

Our findings suggest that there appeared a bubble in Shanghai in 2003, accounting for 22 percent of the housing price. By contrast, Beijing had no sign of a bubble in the same year. The bubble phenomenon, of course, should not be taken without caution for the constraints of data. Nonetheless, this study has laid the ground work for further investigation into abnormal housing price phenomena in Mainland China.

Originality/value

Our findings may help foreign investors better understand the Chinese housing markets and make better housing investment decisions in the two cities.

Details

Management Decision, vol. 43 no. 4
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 23 August 2019

Haiqing He, Ting Chen, Minqiang Chen, Dajun Li and Penggen Cheng

This paper aims to present a novel approach of image super-resolution based on deep–shallow cascaded convolutional neural networks for reconstructing a clear and high-resolution…

Abstract

Purpose

This paper aims to present a novel approach of image super-resolution based on deep–shallow cascaded convolutional neural networks for reconstructing a clear and high-resolution (HR) remote sensing image from a low-resolution (LR) input.

Design/methodology/approach

The proposed approach directly learns the residuals and mapping between simulated LR and their corresponding HR remote sensing images based on deep and shallow end-to-end convolutional networks instead of assuming any specific restored models. Extra max-pooling and up-sampling are used to achieve a multiscale space by concatenating low- and high-level feature maps, and an HR image is generated by combining LR input and the residual image. This model ensures a strong response to spatially local input patterns by using a large filter and cascaded small filters. The authors adopt a strategy based on epochs to update the learning rate for boosting convergence speed.

Findings

The proposed deep network is trained to reconstruct high-quality images for low-quality inputs through a simulated dataset, which is generated with Set5, Set14, Berkeley Segmentation Data set and remote sensing images. Experimental results demonstrate that this model considerably enhances remote sensing images in terms of spatial detail and spectral fidelity and outperforms state-of-the-art SR methods in terms of peak signal-to-noise ratio, structural similarity and visual assessment.

Originality/value

The proposed method can reconstruct an HR remote sensing image from an LR input and significantly improve the quality of remote sensing images in terms of spatial detail and fidelity.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 September 2023

Bifu Xiong, Siliang He, Jinguo Ge, Quantong Li, Chuan Hu, Haidong Yan and Yu-An Shen

This paper aims to examine the effects of bonding temperature, bonding time, bonding pressure and the presence of a Pt catalyst on the bonding strength of Cu/SB/P-Cu/SB/Cu joints…

Abstract

Purpose

This paper aims to examine the effects of bonding temperature, bonding time, bonding pressure and the presence of a Pt catalyst on the bonding strength of Cu/SB/P-Cu/SB/Cu joints by transient liquid phase bonding (TLPB).

Design/methodology/approach

TLPB is promising to assemble die-attaching packaging for power devices. In this study, porous Cu (P-Cu) foil with a distinctive porous structure and Sn-58Bi solder (SB) serve as the bonding materials for TLPB under a formic acid atmosphere (FA). The high surface area of P-Cu enables efficient diffusion of the liquid phase of SB, stimulating the wetting, spreading and formation of intermetallic compounds (IMCs).

Findings

The higher bonding temperature decreased strength due to the coarsening of IMCs. The longer bonding time reduced the bonding strength owing to the coarsened Bi and thickened IMC. Applying optimal bonding pressure improved bonding strength, whereas excessive pressure caused damage. The presence of a Pt catalyst enhanced bonding efficiency and strength by facilitating reduction–oxidation reactions and oxide film removal.

Originality/value

Overall, this study demonstrates the feasibility of low-temperature TLPB for Cu/SB/P-Cu/SB/Cu joints and provides insights into optimizing bonding strength for the interconnecting materials in the applications of power devices.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 17 August 2021

Chengxi Zhang, Hui-Jie Sun, Jin Wu, Zhongyang Fei, Yu Jiang and Guanhua Zhang

This paper aims to study the attitude control problem with mutating orbital rate and actuator fading.

Abstract

Purpose

This paper aims to study the attitude control problem with mutating orbital rate and actuator fading.

Design/methodology/approach

To avoid malicious physical attacks and hide itself, the spacecraft may irregularly switch its orbit altitude within a specific range, which will bring about variations in orbital rate, thereby causing mutations in the attitude dynamics model. The actuator faults will also cause changes in system dynamics. Both factors affect the control performance. First, this paper determines the potential switching orbits. Then under different conditions, design controllers that can accommodate actuator faults according to the statistical law of actuator fading.

Findings

This paper, to the best of the authors’ knowledge, for the first time, introduces the Markovian jump framework to model the possible unexpected mutating of orbital rate and actuator fading of spacecraft and then designs a novel control policy to solve the attitude control problem.

Practical implications

This paper also provides the algorithm design processes in detail. A comparative numerical simulation is given to verify the effectiveness of the proposed algorithm.

Originality/value

This is an early solution for spacecraft attitude control with dynamics model mutations.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 October 2018

Tanmoy Hazra, C.R.S. Kumar and Manisha Nene

The purpose of this paper is to propose a model for a two-agent multi-target-searching scenario in a two-dimensional region, where some places of the region have limited resource…

Abstract

Purpose

The purpose of this paper is to propose a model for a two-agent multi-target-searching scenario in a two-dimensional region, where some places of the region have limited resource capacity in terms of the number of agents that can simultaneously pass through those places and few places of the region are unreachable that expand with time. The proposed cooperative search model and Petri net model facilitate the search operation considering the constraints mentioned in the paper. The Petri net model graphically illustrates different scenarios and helps the agents to validate the strategies.

Design/methodology/approach

In this paper, the authors have applied an optimization approach to determine the optimal locations of base stations, a cooperative search model, inclusion–exclusion principle, Cartesian product to optimize the search operation and a Petri net model to validate the search technique.

Findings

The proposed approach finds the optimal locations of the base stations in the region. The proposed cooperative search model allows various constraints such as resource capacity, time-dependent unreachable places/obstacles, fuel capacities of the agents, two types of targets assigned to two agents and limited sortie lengths. On the other hand, a Petri net model graphically represents whether collisions/deadlocks between the two agents are possible or not for a particular combination of paths as well as effect of time-dependent unreachable places for different combination of paths are also illustrated.

Practical implications

The problem addressed in this paper is similar to various real-time problems such as rescue operations during/after flood, landslide, earthquake, accident, patrolling in urban areas, international borders, forests, etc. Thus, the proposed model can benefit various organizations and departments such as rescue operation authorities, defense organizations, police departments, etc.

Originality/value

To the best of the authors’ knowledge, the problem addressed in this paper has not been completely explored, and the proposed cooperative search model to conduct the search operation considering the above-mentioned constraints is new. To the best of the authors’ knowledge, no paper has modeled time-dependent unreachable places with the help of Petri net.

Details

International Journal of Intelligent Unmanned Systems, vol. 6 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 4 September 2017

Tanmoy Hazra, C.R.S. Kumar and Manisha Nene

The purpose of this paper is to propose a model for a target searching problem in a two-dimensional region with time constraints. The proposed model facilitates the search…

Abstract

Purpose

The purpose of this paper is to propose a model for a target searching problem in a two-dimensional region with time constraints. The proposed model facilitates the search operation by minimizing the mission time and fuel usage, and the search operation is performed by a set of agents divided into a number of groups.

Design/methodology/approach

The authors have applied optimization techniques, Cartesian product, inclusion–exclusion principle, cooperative strategy, Shapley value, fuzzy Shapley function and Choquet integral to model the problem.

Findings

The proposed technique optimizes the placement of base stations that minimizes the sortie length of the agents. The results show that the cooperative strategy outperforms the non-cooperative strategy. The Shapley values quantify the rewards of each group based on their contributions to the search operation, whereas the fuzzy Shapley values determine the rewards of each group based on their contributions and level of cooperation in the search operation.

Practical implications

The proposed model can be applied to model many real-time problems such as patrolling in international borders, urban areas, forests and managing rescue operations after natural calamities, etc. Therefore, defence organizations, police departments and other operation management sectors will be benefitted by applying the proposed approach.

Originality/value

To the best of the authors’ knowledge, determining the optimal locations of base stations in a region is not explored in the existing works on target searching problems with fuel constraints. The proposed approach to cooperatively search the targets in a region is new. Introducing the Shapley function and fuzzy Shapley function is a novel idea to quantify the rewards of each group based on their contributions and level of cooperation in the search operation. This paper addresses these unexplored areas.

Details

Kybernetes, vol. 46 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 October 2021

Zhifang Wang, Jianguo Yu, Shangjing Lin, Junguo Dong and Zheng Yu

The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H adaptive…

169

Abstract

Purpose

The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the system to distribute to solve the problem of control and communication failure at the same time.

Design/methodology/approach

In the paper, the authors propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network-integrated system.

Findings

The results show that the integrated system has good robustness and fault tolerance performance indicators for flight control and wireless signal transmission when confronted with external disturbances, internal actuator failures and wireless network associated failures and the flight control curve of the quadrotor unmanned aerial vehicle (UAV) is generally smooth and stable, even if it encounters external disturbances and actuator failures, its fault tolerance performance is very good. Then in the range of 400–800 m wireless communication distance, the success rate of wireless signal loop transmission is stable at 80%–100% and the performance is at least relatively improved by 158.823%.

Originality/value

This paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, based on the robust fault-tolerant control algorithm, the authors propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the system and through the Riccati equation and linear matrix inequation method, the designed distributed robust H adaptive fault-tolerant controller further optimizes the fault suppression factor γ, so as to break through the limitation of only one Lyapunov matrix for different fault modes to distribute to solve the problem of control and communication failure at the same time.

1 – 10 of 541