Search results

1 – 2 of 2
To view the access options for this content please click here
Article
Publication date: 19 July 2019

Biao Zhao, Wenfeng Ding, Weijie Kuang and Yucan Fu

This paper aims to evaluate the influence of molybdenum disulfide (MoS2) concentrations (5, 7.5, 10, 12.5 and 15 Wt.%) on the microstructure and tribological property of…

Abstract

Purpose

This paper aims to evaluate the influence of molybdenum disulfide (MoS2) concentrations (5, 7.5, 10, 12.5 and 15 Wt.%) on the microstructure and tribological property of the self-lubrication cubic boron nitride (CBN) abrasive composites.

Design/methodology/approach

Three point bending method and rotating sliding test are used to evaluate the flexural strength and tribological property of self-lubricating CBN abrasive composites. Microstructure, wear morphology of the ball and scratch are supported by scanning electron microscopy, optical microscope and three-dimensional confocal microscopy, etc.

Findings

The MoS2 concentration has a significant influence on the interface microstructure between CBN abrasives and matrix alloys, and thus, affects the flexural strength of CBN abrasive composites. The grain fracture modes of CBN abrasive composites are transformed from the transgranular fracture into intergranular fracture as the MoS2 concentrations increase. Additionally, the friction coefficient of as-sintered samples decreases with the MoS2 concentrations. The MoS2 concentrations of 10 Wt.% are final determined to fabricate self-lubricating composites in basis of the mechanical and lubricating property.

Originality/value

The ball is fabricated under vacuum sintering process. The tribological property of self-lubricating CBN abrasive composites is evaluated in terms of the friction coefficient and morphologies of the ball and scratches after rotating sliding tests.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 4 May 2010

Qinglong An, Yucan Fu and Jiuhua Xu

Grinding may generate high temperature along the arc of grinding zone, especially during the grinding process of difficult‐to‐machine materials. It can cause thermal…

Abstract

Purpose

Grinding may generate high temperature along the arc of grinding zone, especially during the grinding process of difficult‐to‐machine materials. It can cause thermal damage to the ground surface and poor surface integrity. Conventional cooling methods based on large amounts of water‐oil emulsions can be both ineffective and environmentally unacceptable. The purpose of this paper is to offer a new high efficiency cooling method – cryogenic pneumatic mist jet cooling (CPMJ) to enhance heat transfer in the grinding zone during grinding of difficult‐to‐machine materials.

Design/methodology/approach

CPMJ equipment is a set up, which can produce water mist of −5°C with jet velocity above 150 m/s and mean particle size below 20 μm at the impingement distance of 10‐40 mm on the symmetry axis. To validate the cooling efficiency of CPMJ equipment, heat transfer experiments were carrying out on it. Finally, CPMJ was applied to the grinding of titanium alloy to verify its cooling effects.

Findings

With high penetrative power and water mist of −5°C, CPMJ can greatly improve heat transfer efficiency in the grinding zone. Experimental results, including heat transfer experiments and grinding experiments, indicate that CPMJ has strong cooling ability and can offer better cooling effects compared with cold air jet and traditional flood cooling method. With CPMJ cooling method, grinding zone temperature can be effectively reduced and good surface quality can be achieved during grinding of titanium alloy.

Originality/value

CPMJ cooling method is an effective and pollution‐free way to solve the thermal problems during grinding of difficult‐to‐machine materials.

Details

Industrial Lubrication and Tribology, vol. 62 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2