Search results

1 – 10 of over 1000
Article
Publication date: 29 July 2020

Liang Du, Wei-Jun Zhang and Jian-Jun Yuan

This paper aims to present the design and experimental tests of an active circulating cooling system for the Experimental Advanced Superconducting Tokamak in-vessel inspection…

Abstract

Purpose

This paper aims to present the design and experimental tests of an active circulating cooling system for the Experimental Advanced Superconducting Tokamak in-vessel inspection manipulator, which will help the current manipulator prototype to achieve a full-scale in-vessel high temperature environment compatibility.

Design/methodology/approach

The high-temperature effects and heat transfer conditions of the manipulator under in-vessel environment were analyzed. An active circulating cooling system was designed and implemented on the manipulator prototype. A simulative in-vessel inspection task in a high temperature environment of 100°C was carried out to evaluate the performance of the active circulating cooling system.

Findings

The proposed active circulating cooling system was proved effective in helping the manipulator prototype to achieve its basic in-vessel inspection capability in a high temperature environment. The active circulating cooling system performance can be further improved considering the cooling structure coefficient differences in different manipulator parts.

Originality/value

For the first time, the active circulating cooling system was implemented and tested on a full-scale of the in-vessel inspection manipulator. The experimental data of the temperature distribution inside the manipulator and the operating status of the circulating system were helpful to evaluate the current active circulating cooling system design and provided effective guidance for improving the overall system performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 November 2017

Jen-Chia Chang, Yuan-Du Hsiao, Su-Chang Chen and Yu Tsung-Ta

The purpose of this paper is to investigate entrepreneurial competencies of students in practicums within departments of electrical engineering and computer sciences (EECS) in…

Abstract

Purpose

The purpose of this paper is to investigate entrepreneurial competencies of students in practicums within departments of electrical engineering and computer sciences (EECS) in universities of technology. In total, 71 faculty members who advised in entrepreneurial competitions in universities of technology were participants in the questionnaire survey to find the entrepreneurial competencies during practicums of the EECS students.

Design/methodology/approach

Analysis was carried out based on the literatures related to off-campus internship in universities of technology and entrepreneurship competency. Then, through the questionnaire survey, the authors can understand what the entrepreneurial abilities should have when they after off-campus internships. The entrepreneurship competency expected of off-campus internship students within EECS was analyzed to derive at the important conclusion in this study.

Findings

As the results of this study, the authors found that entrepreneurial processes, entrepreneurial traits/behaviors, communications and interpersonal skills, and digital skills are the entrepreneurial competencies that are emphasized during practicums.

Originality/value

The paper suggests that, first, the EECS students take up innovative entrepreneurship programs and take electives such as marketing management, financial management, and related business administration courses. Second, respective universities of technology and internship organizations may co-arrange the incorporation of project-based learning (PBL), PBL into the internship work content. Third, establishing a platform that bridges communication for off-campus internship students.

Details

Education + Training, vol. 60 no. 7/8
Type: Research Article
ISSN: 0040-0912

Keywords

Article
Publication date: 13 October 2022

Xiaomeng Zhang, Sang Xiong, Feng Gao, Jinyuan Du and Qin-Jian Du

WO3 particles were prepared by the sol-gel method. Tetraethyl silicate (TEOS) was used to obtain a SiO2-coated WO3 nanoparticle. Quantum chemical parameters of oleic acid…

Abstract

Purpose

WO3 particles were prepared by the sol-gel method. Tetraethyl silicate (TEOS) was used to obtain a SiO2-coated WO3 nanoparticle. Quantum chemical parameters of oleic acid, triethanolamine, glycerol and methyl pentane as dispersants were theoretically calculated. Tribological properties of SiO2/WO3 nanocomposite lubricant were carried out on an MRS-10A four-ball friction and wear tester.

Design/methodology/approach

The purpose of this study is to investigate the preparation and tribological properties of SiO2/WO3 nanocomposite lubricant.

Findings

The obtained SiO2-coated WO3 nanoparticle (nano-SiO2/WO3) with a particle size of about 70 nm. The calculated adsorption energy of triethanolamine on the surface of the steel ball is 554.6 eV, and triethanolamine is selected as the dispersant. The dispersion effect of SiO2/WO3 nanocomposite lubricant is good, which shows that triethanolamine oleate plays a good dispersion role in the preparation of lubricant, which is consistent with the calculation results of the adsorption capacity of dispersant. As a good auxiliary lubricant, SiO2 can improve the tribological properties and wear resistance of WO3.

Originality/value

Nanocomposite lubricants have been the focus of research in recent years, which could greatly reduce energy consumption. And the SiO2/WO3 exhibited excellent lubrication performance as a lubricant additive. The lubrication mechanism of SiO2/WO3 nanocomposite lubricant is the synergistic lubrication mechanism of friction film lubrication and antifriction bearing. This study could provide a certain reference for the practical application of nanocomposite lubricants.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 March 2016

Tan Chen, Wei-jun Zhang, Jian-jun Yuan, Liang Du and Ze-yu Zhou

This paper aims to present a different cooling method (water cooling) to protect all the mechanical/electrical components for Tokamak in-vessel inspection manipulator. The method…

Abstract

Purpose

This paper aims to present a different cooling method (water cooling) to protect all the mechanical/electrical components for Tokamak in-vessel inspection manipulator. The method is demonstrated effective through high temperature experiment, which provides an economical and robust approach for manipulators to work normally under high temperature.

Design/methodology/approach

The design of cooling system uses spiral copper tube structure, which is versatile for all types of key components of manipulator, including motors, encoders, drives and vision systems. Besides, temperature sensors are set at different positions of the manipulator to display temperature data to construct a close-loop feedback control system with cooling components.

Findings

The cooling system for the whole inspection manipulator working under high temperature is effective. Using insulation material such as rubber foam as component coating can significantly reduce the environmental heat transferred to cooling system.

Originality/value

Compared with nitrogen gas cooling applied in robotic protection design, although it is of less interest in prior research, water cooling method proves to be effective and economical through our high temperature experiment. This paper also presents an energetic analysis method to probe into the global process of water cooling and to evaluate the cooling system.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 October 2013

Du-Ming Tsai and Tzu-Hsun Tseng

Mobile robots become more and more important for many potential applications such as navigation and surveillance. The paper proposes an image processing scheme for moving object…

Abstract

Purpose

Mobile robots become more and more important for many potential applications such as navigation and surveillance. The paper proposes an image processing scheme for moving object detection from a mobile robot with a single camera. It especially aims at intruder detection for the security robot on either smooth paved surfaces or uneven ground surfaces.

Design/methodology/approach

The core of the proposed scheme is the template matching with basis image reconstruction for the alignment between two consecutive images in the video sequence. The most representative template patches in one image are first automatically selected based on the gradient energies in the patches. The chosen templates then form a basis matrix, and the instances of the templates in the subsequent image are matched by evaluating their reconstruction error from the basis matrix. For the two well-aligned images, a simple and fast temporal difference can thus be applied to identify moving objects from the background.

Findings

The proposed template matching can tolerate in rotation (±10°) and (±10°) in scaling. By adding templates with larger rotational angles in the basis matrixes, the proposed method can be further extended for the match of images from severe camera vibrations. Experimental results of video sequences from a non-stationary camera have shown that the proposed scheme can reliably detect moving objects from the scenes with either minor or severe geometric transformation changes. The proposed scheme can achieve a fast processing rate of 32 frames per second for an image of size 160×120.

Originality/value

The basic approaches for moving object detection with a mobile robot are feature-point match and optical flow. They are relatively computational intensive and complicated to implement for real-time applications. The proposed template selection and template matching are very fast and easy to implement. Traditional template matching methods are based on sum of squared differences or normalized cross correlation. They are very sensitive to minor displacement between two images. The proposed new similarity measure is based on the reconstruction error from the test image and its reconstruction from the linear combination of the templates. It is thus robust under rotation and scale changes. It can be well suited for mobile robot surveillance.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 April 2018

Liang Du, Jia-Bo Feng, Hua Wang and Wei-jun Zhang

This paper aims to present the design and a prototype experiment of a robotic joint module for tokamak in-vessel manipulator-related research; the results will promote the…

Abstract

Purpose

This paper aims to present the design and a prototype experiment of a robotic joint module for tokamak in-vessel manipulator-related research; the results will promote the adaptation of current in-vessel inspection manipulator to achieve full tokamak in-vessel environment compatibility.

Design/methodology/approach

A flexible metallic bellow-enclosed working chamber is used to protect the main servo drive components, the active cooling method for high temperature protection and the servo control structure simplification for high radiation endurance. A joint module prototype is manufactured and tested under a similar in-vessel environmental condition for extreme condition protection validation and basic servo control ability evaluation.

Findings

The joint module prototype successfully survived the similar in-vessel environment tests and proved good mobility via closed-loop servo control. A conceptual design of a serial linkage manipulator with joint module structure is proposed for future in-vessel inspection manipulator development.

Originality/value

The proposed joint module uses common industrial servo components to achieve its full extreme in-vessel environment compatibility. Different from traditional metallic bellow application in a vacuum environment to produce a linear movement result, the proposed joint module aims to achieve rotating movement directly from the metallic bellow structure, thereby reducing the joint structure space requirement, simplifying the vacuum environment movement transmission structure and increasing the vacuum environment compatibility degree.

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 January 2009

Ya‐qing Mao, Yuan Du and Jing‐juan Liu

The purpose of this paper is to discover and better understand the efficiency of university mergers from the perspective of knowledge production, with the research capability as…

1069

Abstract

Purpose

The purpose of this paper is to discover and better understand the efficiency of university mergers from the perspective of knowledge production, with the research capability as the point of contact.

Design/methodology/approach

In total, 20 colleges and universities directly under the central ministries that merged in 2000 were taken as the research samples. Factor analysis methods are adopted to calculate the public factor scores, which were taken as the basis of the time series analysis and similar comparative analysis.

Findings

The results indicated that, by the end of 2005, the reform of universities merger has a positive impact on the universities' knowledge production, but there was a “short‐term prosperity” after the merger happened, especially in the aspect of scientific research funding efficiency and the transformation of knowledge production outcomes.

Originality/value

Few if any mergers are painless and in the literature on mergers it is generally agreed that it can take up to ten years for the wounds to heal and for the new institution forged from previously autonomous identities to operate as a cohesive and well integrated whole.

Details

International Journal of Educational Management, vol. 23 no. 1
Type: Research Article
ISSN: 0951-354X

Keywords

Article
Publication date: 30 April 2020

Kaifeng Jiang, Si Yuan and Qinyan Xing

This paper aims to propose a new adaptive strategy for two-dimensional (2D) nonlinear finite element (FE) analysis of the minimal surface problem (MSP) based on the element energy…

Abstract

Purpose

This paper aims to propose a new adaptive strategy for two-dimensional (2D) nonlinear finite element (FE) analysis of the minimal surface problem (MSP) based on the element energy projection (EEP) technique.

Design/methodology/approach

By linearizing nonlinear problems into a series of linear problems via the Newton method, the EEP technique, which is an effective and reliable point-wise super-convergent displacement recovery strategy for linear FE analysis, can be directly incorporated into the solution procedure. Accordingly, a posteriori error estimate in maximum norm was established and an adaptive 2D nonlinear FE strategy of h-version mesh refinement was developed.

Findings

Three classical known surfaces, including a singularity problem, were analysed. Moreover, an example whose analytic solution is unavailable was considered and a comparison was made between present results and those computed by the MATLAB PDE toolbox. The results show that the adaptively-generated meshes reflect the difficulties inherent in the problems and the proposed adaptive analysis can produce FE solutions satisfying the user-preset error tolerance in maximum norm with a fair adaptive convergence rate.

Originality/value

The EEP technique for linear FE analysis was extended to the nonlinear procedure of MSP and can be expected to apply to other 2D nonlinear problems. The employment of the maximum norm makes point-wisely error control on the sought surfaces possible and makes the proposed method distinguished from other adaptive FE analyses.

Article
Publication date: 29 March 2021

Haohan Sun and Si Yuan

A general strategy is developed for adaptive finite element (FE) analysis of free vibration of elastic membranes based on the element energy projection (EEP) technique.

Abstract

Purpose

A general strategy is developed for adaptive finite element (FE) analysis of free vibration of elastic membranes based on the element energy projection (EEP) technique.

Design/methodology/approach

By linearizing the free vibration problem of elastic membranes into a series of linear equivalent problems, reliable a posteriori point-wise error estimator is constructed via EEP super-convergent technique. Hierarchical local mesh refinement is incorporated to better deal with tough problems.

Findings

Several classical examples were analyzed, confirming the effectiveness of the EEP-based error estimation and overall adaptive procedure equipped with a local mesh refinement scheme. The computational results show that the adaptively-generated meshes reasonably catch the difficulties inherent in the problems and the procedure yields both eigenvalues with required accuracy and mode functions satisfying user-preset error tolerance in maximum norm.

Originality/value

By reasonable linearization, the linear-problem-based EEP technique is successfully transferred to two-dimensional eigenproblems with local mesh refinement incorporated to effectively and flexibly deal with singularity problems. The corresponding adaptive strategy can produce both eigenvalues with required accuracy and mode functions satisfying user-preset error tolerance in maximum norm and thus can be expected to apply to other types of eigenproblems.

Details

Engineering Computations, vol. 38 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 June 2019

Yiyi Dong, Si Yuan and Qinyan Xing

This study aims to propose a general and efficient adaptive strategy with local mesh refinement for two-dimensional (2D) finite element (FE) analysis based on the element energy…

Abstract

Purpose

This study aims to propose a general and efficient adaptive strategy with local mesh refinement for two-dimensional (2D) finite element (FE) analysis based on the element energy projection (EEP) technique.

Design/methodology/approach

In view of the inflexibility of the existing global dimension-by-dimension (D-by-D) recovery method via EEP technique, in which displacements are recovered through element strips, an improved element D-by-D recovery strategy was proposed, which enables the EEP recovery of super-convergent displacements to be implemented mostly on a single element. Accordingly, a posteriori error estimate in maximum norm was established and an EEP-based adaptive FE strategy of h-version with local mesh refinement was developed.

Findings

Representative numerical examples, including stress concentration and singularity problems, were analyzed; the results of which show that the adaptively generated meshes reasonably reflect the local difficulties inherent in the physical problems and the proposed adaptive analysis can produce FE displacement solutions satisfying the user-specified tolerances in maximum norm with an almost optimal adaptive convergence rate.

Originality/value

The proposed element D-by-D recovery method is a more efficient and flexible displacement recovery method, which is implemented mostly on a single element. The EEP-based adaptive FE analysis can produce displacement solutions satisfying the specified tolerances in maximum norm with an almost optimal convergence rate and thus can be expected to apply to other 2D problems.

1 – 10 of over 1000