Search results

1 – 10 of over 2000
Article
Publication date: 29 June 2020

Ruihua Joy Jiang, Jie Xiong, Yuan Ding and Ravi Parameswaran

How to enter and expand in a newly emerged foreign market is less understood. Should multinational enterprises move fast or slowly? In this study, the authors take China as the…

393

Abstract

Purpose

How to enter and expand in a newly emerged foreign market is less understood. Should multinational enterprises move fast or slowly? In this study, the authors take China as the context to investigate what factors will lead to a fast expansion strategy in a foreign market. The purpose of this paper is to understand whether fast expansion benefits firms’ performance in a rapidly emerging market.

Design/methodology/approach

Based on insights from field interviews, the authors developed a theoretical framework. Then, the authors collected data from surveys of managers of multinational enterprises from Western countries to test their hypothesis. This research context is based on the experience of multinational enterprises in China which opened up to foreign direct investment in 1979.

Findings

This study shows that internally, strategic long-term investment goals, top management team commitment and externally switching costs and the growth in the demand market which will push firms to expand fast in the newly emerged China market. Faster pace of expansion benefits the performance of multinational enterprises in a newly emerged market.

Originality/value

Based on the onsite interviews followed by the survey of top managers of multinational enterprises located in China, this study provides a fine-grained analysis of the importance of pace and its key antecedents. Thus, the results provide new insights to decision-makers of multinational enterprises when considering expanding in an emerging market at its early stages of growth.

Details

Journal of Business Strategy, vol. 42 no. 5
Type: Research Article
ISSN: 0275-6668

Keywords

Abstract

Subject area

Entrepreneurship.

Study level/applicability

This case is suitable for MBA, EMBA and advanced undergraduate students.

Case overview

Noah Wealth Management was founded by Ms Wang Jingbo, a lady in her mid 30s with a team of less than 20 members in 2005. Exploiting market opportunities offered by a lack of good wealth management products and services, Noah grew rapidly from one branch office in 2005 to 59 branch offices in 2011, reaching a staff size of 1,031. Noah listed its shares on the New York Stock Exchange in November 2010. In 2011, Noah was ranked No. 38 among the 100 Top Potential Enterprises in China. Nonetheless, Noah faced several problems of internal management during the course of its fast expansion. In the first quarter financial report of 2012, Noah suffered a 52.6 percent decrease in net income over the corresponding period in 2011. Faced with a rapidly declining share price, Noah announced on May 22, 2012 a US $30 million share repurchase program.

Expected learning outcomes

The case supports a basic lesson on the entrepreneurial cycle, including assessing a business opportunity, resource mobilization, identifying a business model, growth of the venture, listing on the stock market, and subsequent growth challenges. Students can learn about some of the typical dilemmas faced by founders of entrepreneurial ventures, including how to maintain the corporate culture while growing fast and how to prevent members of the founding team from becoming bottlenecks to the development of the organization. The case can also provide management students with an overview of China's wealth management industry.

Supplementary materials

Teaching notes are available for educators only. Please contact your library to gain login details or email support@emeraldinsight.com to request teaching notes.

Details

Emerald Emerging Markets Case Studies, vol. 2 no. 8
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 13 March 2019

Yuan Ding, TongChun Li, LanHao Zhao, MinZhe Zhou and ChaoNing Lin

Multi-level intake structures are used to take the surface water of reservoirs. The changed boundary conditions will certainly make the water hammer phenomenon more complicated…

Abstract

Purpose

Multi-level intake structures are used to take the surface water of reservoirs. The changed boundary conditions will certainly make the water hammer phenomenon more complicated. This paper aims to find out the influence and law of the water hammer pressure after setting the stop log gates.

Design/methodology/approach

The authors use the computational fluid dynamics method with the adaptive grid technology to stimulate the water hammer phenomenon of the multi-level intake hydropower station. In the analysis, we set several different heights of stop log gates and two representative times in the starting up and shutdown processes to reflect the impact of multi-level intake structures.

Findings

The authors find that the setting of the stop log gates will reduce the pressure during the normal operation and will increase the period and amplitude of the water hammer wave, but will not necessarily increase the maximum water hammer pressure during the shutdown process. The relationship between the height of the stop log gates and the amplitude of the water hammer wave is affected by the shutdown time. After setting stop log gates, the depression depth and wave height of the water level in front of the dam increase when the load changes.

Originality/value

The authors study in this paper the water pressure of the multi-level intake hydropower station that has never been studied before and obtain some laws.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 September 2016

Yuan Ding, Véronique Malleret and S. Ramakrishna Velamuri

The purpose of this paper is to contribute to the literature on institutional complexity by highlighting patterns of strategic behaviors of SMEs in institutional environments…

Abstract

Purpose

The purpose of this paper is to contribute to the literature on institutional complexity by highlighting patterns of strategic behaviors of SMEs in institutional environments undergoing large scale transitions.

Design/methodology/approach

The paper uses five in-depth case studies of medium-sized enterprises in the Yangtze River Delta region to study their behaviors over the 2000-2012 period during which the institutional landscape in China underwent major changes.

Findings

The authors find that when institutional complexity is high, i.e., when neither the planned economy nor the market economy logic dominates, the role of organizational filters is more pronounced. In this situation, firm-level characteristics – its revenues and profitability, its competitive position and future prospects – play a dominant role in determining the nature of the strategic decisions and actions the firm undertakes.

Research limitations/implications

The findings provide a nuanced perspective on strategic behaviors under institutional complexity. The qualitative research design offers rich insights but limited generalizability.

Practical implications

The findings offer practical insights to SME leaders in terms of exercising caution in undertaking unrelated diversification during periods of transition from planned to market economies.

Originality/value

The authors apply the concepts of institutional complexity and organizational filters in a context of large scale institutional transitions to study the strategic behaviors of SMEs over a 12 year period.

Details

International Journal of Emerging Markets, vol. 11 no. 4
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 27 January 2021

Irina Tatiana Garces and Cagri Ayranci

A review on additive manufacturing (AM) of shape memory polymer composites (SMPCs) is put forward to highlight the progress made up to date, conduct a critical review and show the…

1140

Abstract

Purpose

A review on additive manufacturing (AM) of shape memory polymer composites (SMPCs) is put forward to highlight the progress made up to date, conduct a critical review and show the limitations and possible improvements in the different research areas within the different AM techniques. The purpose of this study is to identify academic and industrial opportunities.

Design/methodology/approach

This paper introduces the reader to three-dimensional (3 D) and four-dimensional printing of shape memory polymers (SMPs). Specifically, this review centres on manufacturing technologies based on material extrusion, photopolymerization, powder-based and lamination manufacturing processes. AM of SMPC was classified according to the nature of the filler material: particle dispersed, i.e. carbon, metallic and ceramic and long fibre reinforced materials, i.e. carbon fibres. This paper makes a distinction for multi-material printing with SMPs, as multi-functionality and exciting applications can be proposed through this method. Manufacturing strategies and technologies for SMPC are addressed in this review and opportunities in the research are highlighted.

Findings

This paper denotes the existing limitations in the current AM technologies and proposes several directions that will contribute to better use and improvements in the production of additive manufactured SMPC. With advances in AM technologies, gradient changes in material properties can open diverse applications of SMPC. Because of multi-material printing, co-manufacturing sensors to 3D printed smart structures can bring this technology a step closer to obtain full control of the shape memory effect and its characteristics. This paper discusses the novel developments in device and functional part design using SMPC, which should be aided with simple first stage design models followed by complex simulations for iterative and optimized design. A change in paradigm for designing complex structures is still to be made from engineers to exploit the full potential of additive manufactured SMPC structures.

Originality/value

Advances in AM have opened the gateway to the potential design and fabrication of functional parts with SMPs and their composites. There have been many publications and reviews conducted in this area; yet, many mainly focus on SMPs and reserve a small section to SMPC. This paper presents a comprehensive review directed solely on the AM of SMPC while highlighting the research opportunities.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2022

Manikandan Nachimuthu and Rajesh P.K.

This paper aims to provide a review of four-dimensional (4D) printing of shape memory polymers using inkjet printing technology. 4D printing refers to the three-dimensional (3D…

Abstract

Purpose

This paper aims to provide a review of four-dimensional (4D) printing of shape memory polymers using inkjet printing technology. 4D printing refers to the three-dimensional (3D) printing of smart materials capable of shape change or function modification with respect to time when activated by external stimuli. Inkjet printing has gained popularity because of the technical advantages such as non-contact deposition, multi-material printing, high resolution, high speed of printing and minimal post processing. This review will serve as a platform for understanding the inkjet 4D printing process and the shape memory capability of the polymer structures printed using inkjet printing.

Design/methodology/approach

The approach used in this review was to search for and review research works related to inkjet 4D printing of shape memory polymers. The search period was limited for the duration 2013 to 2021 as the 4D printing technology came into light later in 2013. With the review of inkjet 4D printing of shape memory polymers, the shape memory capability of the inkjet-printed structures were also studied.

Findings

With the available research documents, it was found that the inkjet 4D printing technology gained momentum from 2016, three years after the introduction of the 4D printing technology. The key findings of this review show that inkjet 4D printing of shape memory polymers were primarily performed using commercial inkjet printers and polymer inks linked to the printers. Even though the inkjet printing technology is matured enough to print multiple materials, development of shape memory polymer inks for inkjet printability remains complex. To realize the full potential of inkjet 4D printing, novel polymer inks specific for inkjet printing needs development.

Research limitations/implications

The major limitation to this review was the availability of research papers for review. Even though inkjet printing technology has grown to popularity in the graphics printing and publishing industry since its inception in the 19th century, the technology still needs to evolve in the printing of 3D structures due to the limitations in synthesizing inks that are inkjet printable. However, this research will serve as a platform for understating the current status of inkjet 4D printing and the limitations of the technology.

Originality/value

This review focuses only on the inkjet 4D printing of shape memory polymers among the generally summarized 4D printing review papers available. Currently, 4D printing of shape memory polymers is carried out using only the commercially available polymer printers. Also, researchers do not have the flexibility of modifying the polymer inks linked to the printers. This review can spur more research into the development of novel polymer inks specific for inkjet printing.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 June 2020

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently…

4234

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2021

Hwang Yi

This study aims to present an architectural application of 4D-printed climate-adaptive kinetic architecture and parametric façade design.

Abstract

Purpose

This study aims to present an architectural application of 4D-printed climate-adaptive kinetic architecture and parametric façade design.

Design/methodology/approach

This work investigates experimental prototyping of a reversibly self-shaping façade, by integrating the parametric design approach, smart material and 4D-printing techniques. Thermo-responsive building skin modules of two-way shape memory composite (TWSMC) was designed and fabricated, combining the shape memory alloy fibers (SMFs) and 3D-printed shape memory polymer matrices (SMPMs). For geometry design, deformation of the TWSMC was simulated with a dimension-reduced mathematical model, and an optimal arrangement of three different types of TWSMC modules were designed and fabricated into a physical scale model.

Findings

Model-based experiments show robust workability and formal reversibility of the developed façade. Potential utility of this module for adaptive building design and construction is discussed based on the results. Findings help better understand the shape memory phenomena and presented design-inclusive technology will benefit architectural communities of smart climate-adaptive building.

Originality/value

Two-way reversibility of 4D-printed composites is a topic of active research in material science but has not been clearly addressed in the practical context of architectural design, due to technical barriers. This research is the first architectural presentation of the whole design procedure, simulation and fabrication of the 4D-printed and parametrically movable façade.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 13 September 2023

Shuxin Ding, Tao Zhang, Kai Sheng, Yuanyuan Chen and Zhiming Yuan

The intelligent Central Traffic Control (CTC) system plays a vital role in establishing an intelligent high-speed railway (HSR) system. As the core of HSR transportation command…

Abstract

Purpose

The intelligent Central Traffic Control (CTC) system plays a vital role in establishing an intelligent high-speed railway (HSR) system. As the core of HSR transportation command, the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching. This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.

Design/methodology/approach

This paper first briefly introduces the functions and configuration of the intelligent CTC system. Some new servers, terminals and interfaces are introduced, which are plan adjustment server/terminal, interface for automatic train operation (ATO), interface for Dynamic Monitoring System of Train Control Equipment (DMS), interface for Power Supervisory Control and Data Acquisition (PSCADA), interface for Disaster Monitoring, etc.

Findings

The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans, safety control of train routes and commands, traffic information data platform, integrated simulation of traffic dispatching and ATO function. These technologies have been applied in the Beijing-Zhangjiakou HSR, which commenced operations at the end of 2019. Implementing these key intelligent functions has improved the train dispatching command capacity, ensured the safe operation of intelligent HSR, reduced the labor intensity of dispatching operators and enhanced the intelligence level of China's dispatching system.

Originality/value

This paper provides further challenges and research directions for the intelligent dispatching command of HSR. To achieve the objectives, new measures need to be conducted, including the development of advanced technologies for intelligent dispatching command, coping with new requirements with the development of China's railway signaling system, the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.

Open Access
Article
Publication date: 9 May 2024

Yanhao Sun, Tao Zhang, Shuxin Ding, Zhiming Yuan and Shengliang Yang

In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to…

Abstract

Purpose

In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to propose a scientific and reasonable centralized traffic control (CTC) system risk assessment method.

Design/methodology/approach

First, system-theoretic process analysis (STPA) is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis. Then, to enhance the accuracy of weight calculation, the fuzzy analytical hierarchy process (FAHP), fuzzy decision-making trial and evaluation laboratory (FDEMATEL) and entropy weight method are employed to calculate the subjective weight, relative weight and objective weight of each index. These three types of weights are combined using game theory to obtain the combined weight for each index. To reduce subjectivity and uncertainty in the assessment process, the backward cloud generator method is utilized to obtain the numerical character (NC) of the cloud model for each index. The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system. This cloud model is used to obtain the CTC system's comprehensive risk assessment. The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud. Finally, this process yields the risk assessment results for the CTC system.

Findings

The cloud model can handle the subjectivity and fuzziness in the risk assessment process well. The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.

Originality/value

This study provides a cloud model-based method for risk assessment of CTC systems, which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment, achieving effective risk assessment of CTC systems. It can provide a reference and theoretical basis for risk management of the CTC system.

Details

Railway Sciences, vol. 3 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of over 2000