Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 2 of 2
To view the access options for this content please click here
Article
Publication date: 6 August 2018

Synchronization, anti-synchronization and circuit realization of a novel hyper-chaotic system

Yanjun Lu, Li Xiong, Yongfang Zhang, Peijin Zhang, Cheng Liu, Sha Li and Jianxiong Kang

This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical…

HTML
PDF (6.1 MB)

Abstract

Purpose

This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical behaviors of the new hyper-chaotic system are discussed in detail. The control problem of these hyper-chaotic attractors is also investigated analytically and numerically. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components.

Design/methodology/approach

The adaptive control method is derived to achieve chaotic synchronization and anti-synchronization of the novel hyper-chaotic system with unknown parameters by making the synchronization and anti-synchronization error systems asymptotically stable at the origin based on Lyapunov stability theory. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components. Multisim simulations and electronic circuit experiments are consistent with MATLAB simulation results and they verify the existence of these hyper-chaotic attractors.

Findings

Comparisons among MATLAB simulations, Multisim simulation results and physical experimental results show that they are consistent with each other and demonstrate that changing attractors of the hyper-chaotic system exist.

Originality/value

The goal of this paper is to construct a new four-dimensional hyper-chaotic system with different attractors as certain parameters vary. The adaptive synchronization and anti-synchronization laws of the novel hyper-chaotic system are established based on Lyapunov stability theory. The corresponding electronic circuits for the novel hyper-chaotic system with different attractors are also implemented to illustrate the accuracy and efficiency of chaotic circuit design.

Details

Circuit World, vol. 44 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/CW-01-2018-0005
ISSN: 0305-6120

Keywords

  • Adaptive control
  • Synchronization
  • Anti-synchronization
  • Circuit realization
  • Hyper-chaotic system

To view the access options for this content please click here
Article
Publication date: 7 November 2016

Labor Employment and Social Security in China’s First Village of Reforming and Anhui Province

Lijian Qin and Chenggang Wang

HTML
PDF (50 KB)

Abstract

Details

China Agricultural Economic Review, vol. 8 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/CAER-05-2016-0069
ISSN: 1756-137X

Keywords

  • Labour employment
  • Social security
  • China’s first village of reforming
  • Anhui Province of China
  • I12
  • I15
  • J61

Access
Only content I have access to
Only Open Access
Year
  • All dates (2)
Content type
  • Article (2)
1 – 2 of 2
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here