Search results

1 – 9 of 9
Open Access
Article
Publication date: 2 October 2017

Beibei Xiong, Yongli Li, Ernesto D.R. Santibanez Gonzalez and Malin Song

The purpose of this paper is to measure Chinese industries’ eco-efficiency during 2006-2013. The Chinese industry attained rapid achievement in recent decades, but meanwhile…

1433

Abstract

Purpose

The purpose of this paper is to measure Chinese industries’ eco-efficiency during 2006-2013. The Chinese industry attained rapid achievement in recent decades, but meanwhile, overconsumption of energy and environmental pollution have become serious problems. To solve these problems, many research studies used the data envelopment analysis (DEA) to measure the Chinese industry’s eco-efficiency. However, because the target set by these works is usually the furthest one for a province to be efficient, it may hardly be accepted by any province.

Design/methodology/approach

This paper builds a new “closest target method” based on an additive DEA model considering the undesirable outputs. This method is a mixed-integer programming problem which can measure the ecological efficiency of provinces and more importantly guide the province to perform efficiently with minimum effort.

Findings

The results show that the eco-efficiency of Chinese provinces increased at the average level, but the deviations remained at a larger value. Compared to the “furthest” target methods, the targets by the approach proposed by this study are more acceptable for a province to improve its performance on both economy and environment counts.

Originality/value

This study is the first attempt to introduce the closest targets concept to measure the eco-efficiency and set the target for each provincial industry in China.

Details

International Journal of Climate Change Strategies and Management, vol. 9 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1250

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 February 1998

Zhou Xiaolu, Li Yongli and Chen Beifang

60

Abstract

Details

Kybernetes, vol. 27 no. 1
Type: Research Article
ISSN: 0368-492X

Abstract

Details

Kybernetes, vol. 27 no. 9
Type: Research Article
ISSN: 0368-492X

Content available
Article
Publication date: 26 August 2014

416

Abstract

Details

Asian Review of Accounting, vol. 22 no. 3
Type: Research Article
ISSN: 1321-7348

Content available
Article
Publication date: 10 April 2009

Jin Chen and Jing Guo

656

Abstract

Details

The Electronic Library, vol. 27 no. 2
Type: Research Article
ISSN: 0264-0473

Content available
Book part
Publication date: 6 November 2012

Abstract

Details

Advances in Financial Economics
Type: Book
ISBN: 978-1-78052-788-8

Content available
Article
Publication date: 26 November 2020

Christopher Santi Götz, Patrik Karlsson and Ibrahim Yitmen

The blockchain-based digital twin has been recognized as a prominent technological ecosystem featuring synergies with both established and emergent information management…

1879

Abstract

Purpose

The blockchain-based digital twin has been recognized as a prominent technological ecosystem featuring synergies with both established and emergent information management practice. The purpose of this research is to explore the applicability, interoperability and integrability of a blockchain-based digital twin for asset life cycle management and develop a model of framework which positions the digital twin within a broader context of current management practice and technological availability.

Design/methodology/approach

A systematic literature review was performed to map use cases of digital twin, IoT, blockchain and smart contract technologies. Surveys of industry professionals and analyses were conducted focussing on the mapped use cases' life cycle–centric applicability, interoperability and integrability with current asset life cycle management practice, exploring decision support capabilities and industry insights. Lastly, a model of framework was developed based on the use case, interoperability and integrability findings.

Findings

The results support approaching digitization initiatives with blockchain-based digital twins and the positioning of the concept as both a strategic tool and a multifunctional on-field support application. Integrability enablers include progression towards BIM level 3, decentralized program hubs, modular cross-technological platform interfaces, as well as mergeable and scalable blockchains.

Practical implications

Knowledge of use cases help highlight the functionality of an integrated technological ecosystem and its connection to comprehensive sets of asset life cycle management aspects. Exploring integrability enablers contribute to the development of management practice and solution development as user expectations and technological prerequisites are interlinked.

Originality/value

The research explores asset life cycle management use cases, interoperability and integrability enablers of blockchain-based digital twins and positions the technological ecosystem within current practice and technological availability.

Details

Smart and Sustainable Built Environment, vol. 11 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 26 July 2023

Fong Yew Leong, Dax Enshan Koh, Wei-Bin Ewe and Jian Feng Kong

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular…

1040

Abstract

Purpose

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular entangling layers. A graphical mapping technique for encoding impulse functions is also proposed.

Design/methodology/approach

The Smoluchowski equation, including the Derjaguin–Landau–Verwey–Overbeek potential energy, is solved to simulate colloidal deposition on a planar wall. The performance of different types of entangling layers and over-parameterization is evaluated.

Findings

Colloidal transport can be modelled adequately with variational quantum simulations. Full circular entangling layers with real-amplitude ansätze lead to higher-fidelity solutions. In most cases, the proposed graphical mapping technique requires only a single bit-flip with a parametric gate. Over-parameterization is necessary to satisfy certain physical boundary conditions, and higher-order time-stepping reduces norm errors.

Practical implications

Variational quantum simulation can solve partial differential equations using near-term quantum devices. The proposed graphical mapping technique could potentially aid quantum simulations for certain applications.

Originality/value

This study shows a concrete application of variational quantum simulation methods in solving practically relevant partial differential equations. It also provides insight into the performance of different types of entangling layers and over-parameterization. The proposed graphical mapping technique could be valuable for quantum simulation implementations. The findings contribute to the growing body of research on using variational quantum simulations for solving partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Only content I have access to

Year

Content type

1 – 9 of 9