Search results

1 – 4 of 4
Article
Publication date: 27 October 2021

Yokesh V., Gulam Nabi Alsath Mohammed and Malathi Kanagasabai

The purpose of this paper is to design a suitable guard trace to reduce the electromagentic interference between two closely spaced high frequency transmission lines. A…

Abstract

Purpose

The purpose of this paper is to design a suitable guard trace to reduce the electromagentic interference between two closely spaced high frequency transmission lines. A novel cross-shaped resonator combined via fence is passed down to alleviate far-end and near-end crosstalk (NEXT) in tightly coupled high-speed transmission lines. The distance between the adjacent transmission lines is increased stepwise as a function of trace width.

Design/methodology/approach

A rectangular-shaped resonator via fence is connected by a guard trace has been proposed to overcome the coupling between the traces that is separated by 2 W. Similarly, by creating a cross-shaped resonator via fence connected by guard trace that reduces the spacing further by 1.5 W.

Findings

A tightly coupled transmission line structure that needs separation by a designed unit cell structure. Further research needs to be conducted to improve the NEXT, far-end crosstalk (FEXT) and spacing between the transmission lines.

Originality/value

This study portrays a novel method that combines the resonators via fence with a minimum spacing between the tightly coupled transmission lines which reduce the NEXT and FEXT; thereby reducing the size of the routing area. The resultant test structures are characterized at high frequencies using time domain and frequency domain analysis. The following scattering parameters such as insertion loss, NEXT and FEXT of the proposed method are measured as 1.504 dB, >30 dB and >20 dB, respectively.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 December 2022

Yokesh V., Gulam Nabi Alsath and Malathi Kanagasabai

The design, fabrication and experimental validation of defected microstrip structure (DMS) are proposed to address the problem of near-end crosstalk (NEXT) and far-end…

Abstract

Purpose

The design, fabrication and experimental validation of defected microstrip structure (DMS) are proposed to address the problem of near-end crosstalk (NEXT) and far-end crosstalk (FEXT) between the microstrip transmission lines in a printed circuit board.

Design/methodology/approach

The proposed DMS evolved with the combination of spur line (L-shaped DMS) and U-shaped DMS topologies. This technique reduces the strength of electromagnetic coupling and suppresses crosstalk by optimizing the capacitive and inductive coupling ratio between the linked microstrip lines. The practical inductance value is much more significant in DMS than in defected ground structures (DGS), but the capacitance value remains the same.

Findings

A DMS unit is etched on the aggressor microstrip line instead of the DGS circuit. Because there is no leakage via the ground plane and the circuit size is far smaller than with DGS, the enclosure issue is disregarded. DMS structures have a larger effective inductance and are resistant to electromagnetic interference. A tightly coupled transmission line structure with minimal separation between the coupled microstrip line is designed using DMS. Further research must be conducted to improve the NEXT, FEXT and spacing between the transmission lines.

Originality/value

Simulation and actual measurement results show that the proposed DMS structure can effectively suppress crosstalk by analysing the S-parameters, namely, S_12, S_13 and S_14, with measured values of 1.48 dB, 20.65 dB and 21.099 dB, respectively. The data rate is measured to be 1.34 Gbps as per the eye diagram characterization. The results show that the NEXT and FEXT are reduced by approximately 20 dB in the frequency range of 1–11 GHz for mixed signals. The substantial measured results in the vector network analyser coincide with the computer simulation technology microwave studio suite simulation results.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 October 2019

Dharmendra B.V., Shyam Prasad Kodali and Nageswara Rao Boggarapu

The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve…

Abstract

Purpose

The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve maximum material removal rate (MRR) and minimum surface roughness.

Design/methodology/approach

Data of a few experiments as per the Taguchi’s orthogonal array are considered for achieving maximum MRR and minimum surface roughness (Ra) of the Inconel718. Analysis of variance is performed to understand the statistical significance of AWJM input process parameters.

Findings

Empirical relations are developed for MRR and Ra in terms of the AWJM process parameters and demonstrated their adequacy through comparison of test results.

Research limitations/implications

The signal-to-noise ratio transformation should be applied to take in to account the scatter in the repetition of tests in each test run. But, many researchers have adopted this transformation on a single output response of each test run, which has no added advantage other than additional computational task. This paper explains the impact of insignificant process parameter in selection of optimal process parameters. This paper demands drawbacks and complexity in existing theories prior to use new algorithms.

Practical implications

Taguchi approach is quite simple and easy to handle optimization problems, which has no practical implications (if it handles properly). There is no necessity to hunt for new algorithms for obtaining solution for multi-objective optimization AWJM process.

Originality/value

This paper deals with a case study, which demonstrates the simplicity of the Taguchi approach in solving multi-objective optimization problems with a few number of experiments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 December 2018

Rajyalakshmi K. and Nageswara Rao Boggarapu

Scatter in the outcome of repeated experiments is unavoidable due to measurement errors in addition to the non-linear nature of the output responses with unknown…

Abstract

Purpose

Scatter in the outcome of repeated experiments is unavoidable due to measurement errors in addition to the non-linear nature of the output responses with unknown influential input parameters. It is a standard practice to select an orthogonal array in the Taguchi approach for tracing optimum input parameters by conducting a few number of experiments and confirm them through additional experimentation (if necessary). The purpose of this paper is to present a simple methodology and its validation with existing test results in finding the expected range of the output response by suggesting modifications in the Taguchi method.

Design/methodology/approach

The modified Taguchi approach is proposed to find the optimum process parameters and the expected range of the output response.

Findings

This paper presents a simple methodology and its validation with existing test results in finding the expected range of the output response by suggesting modifications in the Taguchi method.

Research limitations/implications

Adequacy of this methodology should be examined by considering the test data on different materials and structures.

Originality/value

The introduction of Chauvenet’s criterion and opposing the signal-to-noise ratio transformation on repeated experiments of each test run will provide fruitful results and less computation burden.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 4 of 4