Search results

1 – 10 of 30
Article
Publication date: 1 October 2001

Liang‐Hsuan Chen, Shu‐Yi Liaw and Yeong Shin Chen

Since a firm’s management performance can be evaluated in terms of financial ratios, efficient management using financial factors is proposed as the key element for upgrading a…

1926

Abstract

Since a firm’s management performance can be evaluated in terms of financial ratios, efficient management using financial factors is proposed as the key element for upgrading a firm’s productivity. Investigates productivity in terms of certain financial factors of large‐scale manufacturing firms in Taiwan. First determines several influential financial factors using factor analysis. Based on these factors, employs fuzzy clustering approaches to categorize the manufacturing firms into several patterns with distinct characteristics of financial factors. Using the characteristics of productivity and financial factors for each pattern, makes two kinds of analysis, and proposes some suggestions to improve the firms’ productivity.

Details

Industrial Management & Data Systems, vol. 101 no. 7
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 15 March 2021

Yung-Ting Chuang and Yi-Hsi Chen

The purpose of this paper is to apply social network analysis (SNA) to study faculty research productivity, to identify key leaders, to study publication keywords and research…

Abstract

Purpose

The purpose of this paper is to apply social network analysis (SNA) to study faculty research productivity, to identify key leaders, to study publication keywords and research areas and to visualize international collaboration patterns and analyze collaboration research fields from all Management Information System (MIS) departments in Taiwan from 1982 to 2015.

Design/methodology/approach

The authors first retrieved results encompassing about 1,766 MIS professors and their publication records between 1982 and 2015 from the Ministry of Science and Technology of Taiwan (MOST) website. Next, the authors merged these publication records with the records obtained from the Web of Science, Google Scholar, IEEE Xplore, ScienceDirect, Airiti Library and Springer Link databases. The authors further applied six network centrality equations, leadership index, exponential weighted moving average (EWMA), contribution value and k-means clustering algorithms to analyze the collaboration patterns, research productivity and publication patterns. Finally, the authors applied D3.js to visualize the faculty members' international collaborations from all MIS departments in Taiwan.

Findings

The authors have first identified important scholars or leaders in the network. The authors also see that most MIS scholars in Taiwan tend to publish their papers in the journals such as Decision Support Systems and Information and Management. The authors have further figured out the significant scholars who have actively collaborated with academics in other countries. Furthermore, the authors have recognized the universities that have frequent collaboration with other international universities. The United States, China, Canada and the United Kingdom are the countries that have the highest numbers of collaborations with Taiwanese academics. Lastly, the keywords model, system and algorithm were the most common terms used in recent years.

Originality/value

This study applied SNA to visualize international research collaboration patterns and has revealed some salient characteristics of international cooperation trends and patterns, leadership networks and influences and research productivity for faculty in Information Management departments in Taiwan from 1982 to 2015. In addition, the authors have discovered the most common keywords used in recent years.

Details

Library Hi Tech, vol. 40 no. 5
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 20 April 2015

Apinya Chanthakulchan, Pisut Koomsap, Kampanat Auyson and Pitt Supaphol

– This paper aims to present the development of an electrospinning-based rapid prototyping (ESRP) technique for the fabrication of patterned scaffolds from fine fiber.

Abstract

Purpose

This paper aims to present the development of an electrospinning-based rapid prototyping (ESRP) technique for the fabrication of patterned scaffolds from fine fiber.

Design/methodology/approach

This ESRP technique unifies rapid prototyping (RP) and electrospinning to obtain the ability of RP to create a controllable pattern and of electrospinning to create a continuous fine fiber. The technique follows RP process of fused deposition modeling, but instead of using extrusion process for fiber creation, electrospinning is applied to generate a continuous fiber from a liquid solution. A machine prototype has been constructed and used in the experiments to evaluate the technique.

Findings

Three different lay-down patterns: 0°/90°, 45°/135° and 45° twists were used in the experiments. According to the experimental results, stacks of patterned layers could be created with the ESRP technique, and the fabrication process was repeatable and reproducible. However, the existing machine vibration influenced the fiber size and the ability to control straightness and gap size. Also, incomplete solidification of the fibers prior to being deposited obstructed the control of layer thickness. Improvement on vibration suppression and fiber solidification will strengthen the capability of this ESRP technique.

Research limitations/implications

This research is currently limited to the introduction of the ESRP technique, to the development of the machine prototype, to the demonstration of its capability and to the evaluation of the structural properties of the fabricated patterned scaffolds. Further studies are required for better control of the patterned scaffolds and for investigation of mechanical and biological properties.

Originality/value

This unification of the two processes allows not only the fabrication of controllable patterned scaffolds but also the fabrication of both woven and non-woven layers of fibers to be done on one machine.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 July 2021

Rajae Jemghili, Abdelmajid Ait Taleb and Mansouri Khalifa

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the…

Abstract

Purpose

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the published studies in this area. This paper aims to evaluate AM research trends based on 4607 publications most cited from year 2010 to 2020.

Design/methodology/approach

The research methodology is bibliometric indicators and network analysis, including analysis based on keywords, citation analysis, productive journal, related published papers and authors indicators. Two free available software were employed VOSviewer and Bibexcel.

Findings

Keywords analysis results indicate that among the AM processes, Selective Laser Melting and Fused Deposition Modeling techniques, are the two processes ranked on top of the techniques employed and studied with 35.76% and 20.09% respectively. The citation analysis by VOSviewer software, reveals that the medical applications field and the fabrication of metal parts are the areas that interest researchers greatly. Different new research niches, as pharmaceutical industry, digital construction and food fabrication are growing topics in AM scientific works. This study reveals that journals “Materials & design”, “Advanced materials”, “Acs applied materials & interfaces”, “Additive manufacturing”, “Advanced functional materials” and “Biofabrication” are the most productive and influential in AM scientific research.

Originality/value

The results and conclusions of this work can be used as indicators of trends in AM research and/or as prospects for future studies in this area.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Purpose

Additive manufacturing (AM) or solid freeform fabrication (SFF) technique is extensively used to produce intrinsic 3D structures with high accuracy. Its significant contributions in the field of tissue engineering (TE) have significantly increased in the recent years. TE is used to regenerate or repair impaired tissues which are caused by trauma, disease and injury in human body. There are a number of novel materials such as polymers, ceramics and composites, which possess immense potential for production of scaffolds. However, the major challenge is in developing those bioactive and patient-specific scaffolds, which have a required controlled design like pore architecture with good interconnectivity, optimized porosity and microstructure. Such design not only supports cell proliferation but also promotes good adhesion and differentiation. However, the traditional techniques fail to fulfill all the required specific properties in tissue scaffold. The purpose of this study is to report the review on AM techniques for the fabrication of TE scaffolds.

Design/methodology/approach

The present review paper provides a detailed analysis of the widely used AM techniques to construct tissue scaffolds using stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), binder jetting (BJ) and advanced or hybrid additive manufacturing methods.

Findings

Subsequently, this study also focuses on understanding the concepts of TE scaffolds and their characteristics, working principle of scaffolds fabrication process. Besides this, mechanical properties, characteristics of microstructure, in vitro and in vivo analysis of the fabricated scaffolds have also been discussed in detail.

Originality/value

The review paper highlights the way forward in the area of additive manufacturing applications in TE field by following a systematic review methodology.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 June 2020

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Arjun Subramanian, Rahul Sahay, Amutha Cinappan and Seeram Ramakrishna

In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical…

1415

Abstract

Purpose

In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical, the development of a wide range of biomaterials has catalysed the considerable role of 3D printing (3DP), where it functions as synthetic frameworks in the form of scaffolds, constructs or matrices. The purpose of this paper is to present the state-of-the-art literature coverage of 3DP applications in tissue engineering (such as customized scaffoldings and organs, and regenerative medicine).

Design/methodology/approach

This review focusses on various 3DP techniques and biomaterials for tissue engineering (TE) applications. The literature reviewed in the manuscript has been collected from various journal search engines including Google Scholar, Research Gate, Academia, PubMed, Scopus, EMBASE, Cochrane Library and Web of Science. The keywords that have been selected for the searches were 3 D printing, tissue engineering, scaffoldings, organs, regenerative medicine, biomaterials, standards, applications and future directions. Further, the sub-classifications of the keyword, wherever possible, have been used as sectioned/sub-sectioned in the manuscript.

Findings

3DP techniques have many applications in biomedical and TE (B-TE), as covered in the literature. Customized structures for B-TE applications are easy and cost-effective to manufacture through 3DP, whereas on many occasions, conventional technologies generally become incompatible. For this, this new class of manufacturing must be explored to further capabilities for many potential applications.

Originality/value

This review paper presents a comprehensive study of the various types of 3DP technologies in the light of their possible B-TE application as well as provides a future roadmap.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 June 2020

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently…

3808

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 October 2021

Fangfang Sun, Tianze Wang and Yong Yang

Rapid prototyping (RP) technology is widely used in many fields in recent years. Bone tissue engineering (TE) is an interdisciplinary field involving life sciences, engineering…

Abstract

Purpose

Rapid prototyping (RP) technology is widely used in many fields in recent years. Bone tissue engineering (TE) is an interdisciplinary field involving life sciences, engineering and materials science. Hydroxyapatite (HAp) are similar to natural bone and it has been extensively studied due to its excellent biocompatibility and osteoconductivity. This paper aims to review nanoscaled HAp-based scaffolds with high porosity fabricated by various RP methods for bone regeneration.

Design/methodology/approach

The review focused on the fabrication methods of HAp composite scaffolds through RP techniques. The paper summarized the evaluation of these scaffolds on the basis of their biocompatibility and biodegradability through in vitro and in vivo tests. Finally, a summary and perspectives on this active area of research are provided.

Findings

HAp composite scaffold fabricated by RP methods has been widely used in bone TE and it has been deeply studied by researchers during the past two decades. However, its brittleness and difficulty in processing have largely limited its wide application in TE. Therefore, the formability of HAp combined with biocompatible organic materials and fabrication techniques could be effectively enhanced, and it can be used in bone TE applications finally.

Originality/value

This review paper presented a comprehensive study of the various types of HAp composite scaffold fabricated by RP technologies and introduced their potential application in bone TE, as well as future roadmap and perspective.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 June 2018

Yeong-Wha Sawng, Yongjae Park, Seok-Hong Jo and Seung-Lak Park

The purpose of this paper is to provide useful implications for Korean export companies to adopt the smart technology to improve their performance in the era of industrial…

Abstract

Purpose

The purpose of this paper is to provide useful implications for Korean export companies to adopt the smart technology to improve their performance in the era of industrial convergence with the interdisciplinary study between trade and technology management.

Design/methodology/approach

This study followed the five-stage procedure and methods. In the first stage, measurement items were developed in four performance factors: leaning and growth, internal process, customer and finance. In the second stage, data were collected by conducting two types of surveys: first, for Korean export companies that have adopted Radio frequency identification (RFID) to test the proposed model and analyze the performance and second, for RFID experts of industry-university R&D cooperation to measure the relative importance of factors and items. In the third stage, the model was verified with structural equation modeling. In the fourth stage, AHP was used to analyze the relative importance of factors and items. In the fifth stage, post-RFID adoption performance in Korean export companies was measured by a formula for the performance index. Through these five-stage procedure and methods, the final performance improvement strategies and practical implications are presented in the conclusion.

Findings

The framework finds that the total score of RFID post-adoption on company performance proved relatively low, which indicates that the effect of this technology on export companies’ performance is still unsatisfactory. And financial performance proved to be ‘top priority’ area, which requires the most urgent effort for improvement since its importance was higher than learning and growth, internal process and customer performance—but nonetheless its performance index was the lowest. This study finds that strategic decision making is required for adopting smart technology in the perspective of technology convergence to improve the performance of companies among heterogeneous industries.

Research limitations/implications

Despite the significant results of this study alone, it also has limitations. Therefore, the direction of the future study is as follows: future research should focus on finding specific impact factors enhancing post-adoption of smart technologies including RFID performance by conducting empirical studies that identify the factors affecting post adoption of smart technologies rate directly or indirectly.

Originality/value

In the current global market environment, not only technological convergence in the same kind of industry but also industrial convergence in the different kinds of industries are essential to manufacturing and service companies including to export companies with perspective of Innovation. This study has the value as an interdisciplinary study to actually measure the performance of a company by industrial convergence through the theme of adoption of smart technology in export companies.

Article
Publication date: 19 October 2015

Yan Li, Dichen Li, Bingheng Lu, Dajing Gao and Jack Zhou

The purpose of this paper is to review the current status of additive manufacturing (AM) used for tissue engineering (TE) scaffold. AM processes are identified as an effective…

1106

Abstract

Purpose

The purpose of this paper is to review the current status of additive manufacturing (AM) used for tissue engineering (TE) scaffold. AM processes are identified as an effective method for fabricating geometrically complex objects directly from computer models or three-dimensional digital representations. The use of AM technologies in the field of TE has grown rapidly in the past 10 years.

Design/methodology/approach

The processes, materials, precision, applications of different AM technologies and their modified versions used for TE scaffold are presented. Additionally, future directions of AM used for TE scaffold are also discussed.

Findings

There are two principal routes for the fabrication of scaffolds by AM: direct and indirect routes. According to the working principle, the AM technologies used for TE scaffold can be generally classified into: laser-based; nozzle-based; and hybrid. Although a number of materials and fabrication techniques have been developed, each AM technique is a process based on the unique property of the raw materials applied. The fabrication of TE scaffolds faces a variety of challenges, such as expanding the range of materials, improving precision and adapting to complex scaffold structures.

Originality/value

This review presents the latest research regarding AM used for TE scaffold. The information available in this paper helps researchers, scholars and graduate students to get a quick overview on the recent research of AM used for TE scaffold and identify new research directions for AM in TE.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 30