Search results

1 – 3 of 3
Article
Publication date: 17 December 2019

Yiye Xu and Yelda Turkan

The purpose of this paper is to develop a novel and systematic framework for bridge inspection and management to improve the efficiency in current practice.

Abstract

Purpose

The purpose of this paper is to develop a novel and systematic framework for bridge inspection and management to improve the efficiency in current practice.

Design/methodology/approach

A new framework that implements camera-based unmanned aerial systems (UASs) with computer vision algorithms to collect and process inspection data, and Bridge Information Modeling (BrIM) to store and manage all related inspection information is proposed. An illustrative case study was performed using the proposed framework to test its feasibility and efficiency.

Findings

The test results of the proposed framework on an existing bridge verified that: high-resolution images captured by an UAS enable to visually identify different types of defects, and detect cracks automatically using computer vision algorithms, the use of BrIM enable assigning defect information on individual model elements, manage all bridge data in a single model across the bridge life cycle. The evaluation by bridge inspectors from 12 states across the USA demonstrated that all of the identified problems, except for being subjective, can be improved using the proposed framework.

Practical implications

The proposed framework enables to: collect and document accurate bridge inspection data, reduce the number of site visits and avoid data overload and facilitate a more efficient, cost-effective and safer bridge inspection process.

Originality/value

This paper contributes a novel and systematic framework for the collection and integration of inspection data for bridge inspection and management. The findings from the case study suggest that the proposed framework should help improve current bridge inspection and management practice. Furthermore, the difficulties experienced during the implementation are evaluated, which should be helpful for improving the efficiency and the degree of automation of the proposed framework further.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 April 2014

Yelda Turkan, Frédéric Bosché, Carl T. Haas and Ralph Haas

Previous research has shown that “Scan-vs-BIM” object recognition systems, which fuse three dimensional (3D) point clouds from terrestrial laser scanning (TLS) or digital…

Abstract

Purpose

Previous research has shown that “Scan-vs-BIM” object recognition systems, which fuse three dimensional (3D) point clouds from terrestrial laser scanning (TLS) or digital photogrammetry with 4D project building information models (BIM), provide valuable information for tracking construction works. However, until now, the potential of these systems has been demonstrated for tracking progress of permanent structural works only; no work has been reported yet on tracking secondary or temporary structures. For structural concrete work, temporary structures include formwork, scaffolding and shoring, while secondary components include rebar. Together, they constitute most of the earned value in concrete work. The impact of tracking secondary and temporary objects would thus be added veracity and detail to earned value calculations, and subsequently better project control and performance. The paper aims to discuss these issues.

Design/methodology/approach

Two techniques for recognizing concrete construction secondary and temporary objects in TLS point clouds are implemented and tested using real-life data collected from a reinforced concrete building construction site. Both techniques represent significant innovative extensions of existing “Scan-vs-BIM” object recognition frameworks.

Findings

The experimental results show that it is feasible to recognise secondary and temporary objects in TLS point clouds with good accuracy using the two novel techniques; but it is envisaged that superior results could be achieved by using additional cues such as colour and 3D edge information.

Originality/value

This article makes valuable contributions to the problem of detecting and tracking secondary and temporary objects in 3D point clouds. The power of Scan-vs-BIM object recognition approaches to address this problem is demonstrated, but their limitations are also highlighted.

Details

Construction Innovation, vol. 14 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Access

Year

Content type

Article (3)
1 – 3 of 3