Search results

1 – 10 of 42
Article
Publication date: 8 March 2024

Georgy Sunny and T. Palani Rajan

The purpose of the study is to optimize the blending ratio of Arecanut and cotton fibers to create yarn with the best quality for various applications, particularly home…

Abstract

Purpose

The purpose of the study is to optimize the blending ratio of Arecanut and cotton fibers to create yarn with the best quality for various applications, particularly home furnishings. The study aims to determine the effect of different blend ratios on the physical and mechanical properties of the yarn.

Design/methodology/approach

The study involves blending Arecanut and cotton fibers in various ratios (90:10, 75:25, 50:50, 25:75 and 10:90) at two different yarn counts (10/1 and 5/1). Various physical and mechanical properties of the blended yarn are analyzed, including unevenness, coefficient of mass variation (cvm%), imperfection, hairiness, breaking strength, elongation, tenacity and breaking work.

Findings

The research findings suggest that the blend ratio of 10:90 (10% cotton and 90% Arecanut fiber) produced the best results in terms of physical and mechanical properties for both yarn counts. This blend ratio resulted in reduced unevenness, cvm% and imperfection, while also exhibiting good mechanical properties such as breaking strength, elongation, tenacity and breaking work. The blend with a higher concentration of cotton generally showed better properties due to the coarseness of Arecanut fiber. As the goal of the study was to determine the best blend ratio that included the most Arecanut fiber based on its physical and mechanical properties, which is suitable for home furnishing applications, 75:25 Areca cotton blend ratio of yarn count 5/1 proved to be the best.

Research limitations/implications

The study acknowledges that Arecanut fiber must be blended with other commercially used fibers like cotton due to its coarseness. While the study provides insights into optimizing blend ratios for home furnishings and packaging, further research may be needed to make the material suitable for clothing applications.

Practical implications

The research has practical implications for industries interested in utilizing Arecanut and cotton blends for various applications, such as home furnishings and packaging materials. It suggests that specific blend ratios can result in yarn with desirable properties for these purposes.

Social implications

The study mentions that the increased use of Arecanut fibers can benefit the growers of Arecanut, potentially providing economic opportunities for communities engaged in Arecanut farming.

Originality/value

The research explores the utilization of Arecanut fibers, an underutilized resource, in combination with cotton to create sustainable yarn. It assesses various blend ratios and their impact on yarn properties, contributing to the understanding of eco-friendly textile materials.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 February 2024

Saba Sareminia, Zahra Ghayoumian and Fatemeh Haghighat

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring…

Abstract

Purpose

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring high-quality products at a reduced cost has become a significant concern for countries. The primary objective of this research is to leverage data mining and data intelligence techniques to enhance and refine the production process of texturized yarn by developing an intelligent operating guide that enables the adjustment of production process parameters in the texturized yarn manufacturing process, based on the specifications of raw materials.

Design/methodology/approach

This research undertook a systematic literature review to explore the various factors that influence yarn quality. Data mining techniques, including deep learning, K-nearest neighbor (KNN), decision tree, Naïve Bayes, support vector machine and VOTE, were employed to identify the most crucial factors. Subsequently, an executive and dynamic guide was developed utilizing data intelligence tools such as Power BI (Business Intelligence). The proposed model was then applied to the production process of a textile company in Iran 2020 to 2021.

Findings

The results of this research highlight that the production process parameters exert a more significant influence on texturized yarn quality than the characteristics of raw materials. The executive production guide was designed by selecting the optimal combination of production process parameters, namely draw ratio, D/Y and primary temperature, with the incorporation of limiting indexes derived from the raw material characteristics to predict tenacity and elongation.

Originality/value

This paper contributes by introducing a novel method for creating a dynamic guide. An intelligent and dynamic guide for tenacity and elongation in texturized yarn production was proposed, boasting an approximate accuracy rate of 80%. This developed guide is dynamic and seamlessly integrated with the production database. It undergoes regular updates every three months, incorporating the selected features of the process and raw materials, their respective thresholds, and the predicted levels of elongation and tenacity.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 August 2022

Ngan Yi Kitty Lam, Jeanne Tan, Anne Toomey and Ka Chun Jimmy Cheuk

This paper aims to investigate how different knitted structures affect the illuminative effect of polymeric optical fibres (POFs).

147

Abstract

Purpose

This paper aims to investigate how different knitted structures affect the illuminative effect of polymeric optical fibres (POFs).

Design/methodology/approach

Knit prototypes were constructed using a 7-gauge industrial hand flat knitting machine. The textile prototype swatches developed in this study tested POF illumination in three types of knitting structures: intervallic knit and float stitch structures; POF inlaid into double plain and full cardigan structures; and double plain and partial knitting structures. The illuminative effects of the POFs in seven prototype swatches were analysed and compared.

Findings

It is possible to use an industrial hand flat knitting machine to knit POFs. Longer floats expose more POFs, which boosts illumination but limits the textile’s horizontal stretchability. The openness of the full cardigan structure maximises POF exposure and contributes to even illumination. The partial knitting in different sections achieves the most complete physical integration of POFs into the knitted textiles but constrains the horizontal stretchability of the textiles.

Practical implications

The integration of POFs into knitted textiles provides a functional illuminative effect. Applications include but are not limited to fashion, architecture and interior design.

Originality/value

This study is novel, as it investigates new POF knitted textiles with different loop structures. This study examines how knit stitches affect POFs in intervallic knit and float stitch, inlaid POF double knit, double plain and partial knit and the illuminative effects of the knitted textile.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 March 2024

Azita Asayesh and Fatemeh Kolahi Mahmoodi

Pilling and abrasion resistance are two of the most important mechanical properties of the fabric that influence the appearance and performance of the fabric, particularly in the…

Abstract

Purpose

Pilling and abrasion resistance are two of the most important mechanical properties of the fabric that influence the appearance and performance of the fabric, particularly in the case of knitted fabrics. Since, these fabric features are affected by fabric structure the aim of present research is to investigate how utilizing miss stitches and tuck stitches in the fabric structure for design purposes will influence the pilling and abrasion resistance of interlock weft-knitted fabrics.

Design/methodology/approach

In this research, interlock fabrics with different number of miss or tuck stitches on successive Wales were produced and pilling performance and abrasion resistance of the fabrics were investigated.

Findings

The results revealed that increasing the number of miss/tuck stitches on successive Wales decreases the abrasion resistance and enhances the pilling tendency of the fabric. The presence of miss/tuck stitches on both sides of the fabric improves the abrasion resistance and pilling performance of the fabric compared to fabrics containing these stitches on one side of the fabric. Furthermore, the fabric resistance against abrasion and pilling is higher in fabrics consisting of miss stitches compared to fabrics consisting of tuck stitches.

Originality/value

The use of tuck and miss stitches in designing the weft-knitted fabrics is a common method for producing fabrics with variety of knit patterns. Since pilling and abrasion resistance of the fabric influence on its appearance and performance, and none of the previous research studied the pilling and abrasion resistance of interlock-knitted fabrics from the point of presence of tuck and miss stitches on successive Wales of the fabric, this subject has been surveyed in the present research.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 March 2024

Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Shahid Adeel and Alireza Mahmoudi Nahavandi

Agricultural waste and food sources are some of the pollutants of the environment. One of these wastes is the peel of fruits that cannot be consumed as food. In this regard…

Abstract

Purpose

Agricultural waste and food sources are some of the pollutants of the environment. One of these wastes is the peel of fruits that cannot be consumed as food. In this regard, walnut husk (WH) and oleaster peel (PO) are known as two important sources of tannin and are bulky wastes. Because of the high percentage of tannin, these materials can be used as a natural source for the preparation of bio-mordant in the dyeing process.

Design/methodology/approach

In this study, Reseda and Madder were used as natural dyes in the presence of a mixture of two bio-mordants. WH and PO were selected as bio-mordant. All natural resources are extracted to obtain the juice. The phenolic percentage of tannin-containing extracts was evaluated and then it was used for wool yarns by premordanting method. The results of evaluating the fastness properties using the ISO method.

Findings

The most important achievement of this research is the use of agricultural waste in the dyeing process to reduce environmental pollution and create added value. All compounds rich in tannin have some phenolic components, therefore the amount of phenolic content of these extracts was evaluated. The effect of mixing the mordant on the color characteristics of the yarns was investigated and the results showed that changing the ratio of the combination of two mordant is effective on the K/S values. The results of evaluating the fastness properties using the ISO method showed that the washing, rubbing and light fastness in the presence of mordant is good, good and moderate, respectively.

Originality/value

In this paper, to the best of the authors’ knowledge, for the first time, the combination of two natural extracts obtained from agricultural waste has been used to create a new bio-mordant on fibers and improve stability.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Yini Wei, Guiqiang Diao and Zilun Tang

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in…

Abstract

Purpose

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in terms of articles meant to be worn, their prominence among devices and systems meant for cadence is overshadowed by electronic products such as accelerometers, wristbands and smart phones. Athletes and sports enthusiasts using knee sleeves should be able to track their performances and monitor workout progress without the need to carry other devices with no direct sport utility, such as wristbands and wearable accelerometers. The purpose of this study thus is to contribute to the broad area of wearable devices for cadence application by developing a cheap but effective and efficient stride measurement system based on a knee sleeve.

Design/methodology/approach

A textile strain sensor is designed by weft knitting silver-plated nylon yarn together with nylon DTY and covered elastic yarn using a 1 × 1 rib structure. The area occupied by the silver-plated yarn within the structure served as the strain sensor. It worked such that, upon being subjected to stress, the electrical resistance of the sensor increases and in turn, is restored when the stress is removed. The strip with the sensor is knitted separately and subsequently sewn to the knee sleeve. The knee sleeve is then connected to a custom-made signal acquisition and processing system. A volunteer was employed for a wearer trial.

Findings

Experimental results establish that the number of strides taken by the wearer can easily be correlated to the knee flexion and extension cycles of the wearer. The number of peaks computed by the signal acquisition and processing system is therefore counted to represent stride per minute. Therefore, the sensor is able to effectively count the number of strides taken by the user per minute. The coefficient of variation of over-ground test results yielded 0.03%, and stair climbing also obtained 0.14%, an indication of very high sensor repeatability.

Research limitations/implications

The study was conducted using limited number of volunteers for the wearer trials.

Practical implications

By embedding textile piezoresistive sensors in some specific garments and or accessories, physical activity such as gait and its related data can be effectively measured.

Originality/value

To the best of our knowledge, this is the first application of piezoresistive sensing in the knee sleeve for stride estimation. Also, this study establishes that it is possible to attach (sew) already-knit textile strain sensors to apparel to effectuate smart functionality.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 8 April 2024

Anita Meena

This paper aims to examine and compare the export performance and competitiveness of Indian and Chinese textile and clothing industry in post-multifibre arrangement (MFA) era.

Abstract

Purpose

This paper aims to examine and compare the export performance and competitiveness of Indian and Chinese textile and clothing industry in post-multifibre arrangement (MFA) era.

Design/methodology/approach

Balassa’s revealed comparative advantage Index is used to assess the competitiveness of Indian and Chinese textile and clothing exports.

Findings

The results indicate that China’s textiles and garments sector holds a greater proportion of the global market compared with India. India has a robust comparative advantage in silk, carpets and cotton post-MFA. Vegetable textile fibers, paper yarn and woven fabrics of paper yarn are also competitive. China had a strong comparative advantage in silk and fabrics; special woven fabrics, tafted textile fabrics, lace, tapestries, trimmings and embroidery in 2005. China also recorded comparative advantage in silk, man-made filaments: strip and the like of man-made textile materials, fabrics; special woven fabrics, tafted textile fabrics, lace, tapestries, trimmings and embroidery and fabrics; knitted or crocheted in 2021.

Research limitations/implications

This study’s results and recommendations could assist the Indian and Chinese Governments develop policies to upgrade their garment industries.

Originality/value

Though vast literature reviews are available for textile and apparel export performance in India and China separately, there are few studies on comparisons. This study is a significant attempt to evaluate India and China’s competitiveness in the global market.

Details

Vilakshan - XIMB Journal of Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0973-1954

Keywords

Article
Publication date: 15 July 2022

Wiah Wardiningsih, Sandra Efendi, Rr. Wiwiek Mulyani, Totong Totong, Ryan Rudy and Samuel Pradana

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Abstract

Purpose

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Design/methodology/approach

The fiber was extracted using the biological retting process (cold-water retting). The intrinsic fiber properties obtained were used to evaluate the possibility of using fiber for textile applications.

Findings

The average length of a curcuma zedoaria fiber was 34.77 cm with a fineness value of 6.72 Tex. A bundle of curcuma zedoaria fibers was comprised of many elementary fibers. Curcuma zedoaria had an irregular cross-section, with the lumen having a varied oval shape. Curcuma zedoaria fibers had tenacity and elongation value of 3.32 gf/denier and 6.95%, respectively. Curcuma zedoaria fibers had a coefficient of friction value of 0.46. Curcuma zedoaria fibers belong to a hygroscopic fiber type with a moisture regain value of 10.29%.

Originality/value

Extraction and Characterization of Curcuma zedoaria Pseudo-stems Fibers for Textile Application.

1 – 10 of 42